位置 > 首页 > 句子 >

初一数学上册知识点总结 50句菁华

日期:2022-12-02 00:00:00

1、课后及时复习,温故而知新

2、正方体的*面展开图:

3、数轴:

4、有理数的运算:

5、添括号法则

6、直线的性质

7、圆:

8、等式的性质

9、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

10、角∠(angle)也是一种基本的几何图形.

11、等角的补角相等,等角的余角相等.

12、方程:含有未知数的等式就叫做方程.

13、解:解出所列方程.

14、有理数的概念

15、不等式解集的表示方法:

16、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

17、一元一次不等式与一次函数的综合运用:

18、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

19、解一元一次不等式组的步骤:

20、过一点有且只有一条直线和已知直线垂直

21、直线外一点与直线上各点连接的所有线段中,垂线段最短

22、两直线*行,内错角相等

23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24、在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

25、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

26、定义:*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。水*的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为*面直角坐标系的原点。

27、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

28、几何图形的组成

29、点动成线,线动成面,面动成体。

30、①直线公理:过两点有且只有一条直线.

31、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

32、培养学生获取信息,分析问题,处理问题的能力。

33、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

34、大于0的数是正数。

35、规定了原点,单位长度,正方向的直线称为数轴。

36、数的大小比较:

37、若a+b=0,则a,b互为相反数

38、乘除:同号得正,异号的负

39、相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

40、实数大小的比较:利用法则比较大小;利用数轴比较大小。

41、相遇问题:速度和×相遇时间=路程和

42、追赶问题:速度差×追赶时间=追赶距离

43、商品销售问题

44、储蓄问题

45、多项式:;

46、把多项式中的同类项合并成一项,叫做合并同类项;

47、方程的概念:

48、去分母

49、列方程解应用题的一般步骤:

50、任何数同零相乘都得零;


初一数学上册知识点总结 50句菁华扩展阅读


初一数学上册知识点总结 50句菁华(扩展1)

——六年级数学上册知识点 60句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、两个小数的比,向右移动小数点的位置。也是先化成整数比。

3、3 32

4、条形统计图:可以清楚的看出数据的多少

5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

6、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

8、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

9、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

10、被除数÷除数= 被除数/除数

11、因为零不能作除数,所以分数的分母不能为零。

12、乘法分配律:

13、整数减法计算法则:

14、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

15、混合运算用梯等式计算,等号写在第一个数字的左下角。

16、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

17、找单位“1”的方法

18、1的倒数是1,0没有倒数。

19、被除数与商的大小关系

20、20是25的几分之几? 20÷25=4/5

21、已知单位“1”用乘法,求单位“1”用除法;

22、工程问题

23、一个数乘分数的意义就是求一个数的几分之几是多少。

24、求一个数的几分之几是多少?(用乘法)

25、什么是速度?

26、求一个数的百分之几是多少。一个数(单位“1”)×百分率

27、已知一个数的百分之几是多少,求这个数。

28、常用统计图的优点:

29、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

30、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

31、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

32、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

33、百分数应用:

34、圆的定义:

35、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

36、半径为1厘米的圆的周长是3.14厘米。(__)

37、这个月哪项出最多?支出了多少元?

38、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

39、常见的百分率的计算方法:

40、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

41、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

42、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)

43、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

44、除数是整数的小数除法计算法则:

45、圆锥体

46、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

47、化简比:化简之后结果还是一个比,不是一个数。

48、比和除法、分数的区别:

49、已知单位“1”的量用乘法。

50、画线段图:

51、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

52、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

53、比和比例的意义:

54、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

55、“数与形相结合”的思想

56、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

57、圆的半径越长,这个圆就越大。(__)

58、画一个半径为1厘米的圆。

59、直角梯形的高与上底都是(__),下底是(__),面积是(__)。

60、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?


初一数学上册知识点总结 50句菁华(扩展2)

——六年级数学上册知识点 50句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、用比的前项和后项同时除以它们的最大公约数。

3、用表格方式解决有局限性,数目必须小,例:

4、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

5、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

6、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

7、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

8、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

9、如果两个数是互质数,它们的公因数就是1。

10、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

11、减法的性质:

12、整数减法计算法则:

13、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

14、圆的面积=圆周率×半径×半径

15、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

16、成轴对称图形的特征和性质:

17、物体旋转时应抓住三点:

18、分数乘整数的计算方法

19、已知A比B多(或少)几分之几,求A的解题方法

20、1的倒数是1,0没有倒数。

21、分数四则混合运算的运算顺序

22、工程问题

23、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

24、一个数乘分数的意义就是求一个数的几分之几是多少。

25、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;

26、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

27、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

28、百分数的意义:

29、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

30、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

31、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)

33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

34、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

35、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、小数乘法意义:

38、、长方形

39、化简比:化简之后结果还是一个比,不是一个数。

40、比和除法、分数的区别:

41、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

42、圆面积公式的推导

43、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

44、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

45、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

46、在同一个圆中最长的一条线段是(__)。

47、两个圆的大小一样,它们的半径一定相等。(__)

48、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)

49、经过圆心的线段一定是直径。(__)

50、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)


初一数学上册知识点总结 50句菁华(扩展3)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


初一数学上册知识点总结 50句菁华(扩展4)

——二年级上册数学知识点 50句菁华

1、早上起来,面对太阳,前面是(东),后面是(西),左面是(北),右面是(南)。

2、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。

3、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

4、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。

5、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

6、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

7、万以内数的读法和写法与1000以内的数读法和写法相同。

8、最小两位数是10,的两位数是99;最小三位数是100,的三位数是999;最小四位数是1000,的四位数是9999;最小的五位数是10000,的五位数是99999。

9、“有余数除法”的复习。

10、“方向和路线”的复习。

11、“万以内的加、减法”的复习。

12、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。

13、实数

14、轴对称与坐标变化

15、一次函数与正比例函数

16、用二元一次方程组确定一次函数表达式

17、从统计图分析数据的集中趋势

18、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

19、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

20、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

21、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

22、差=被减数—减数

23、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

24、56页例5

25、探索并掌握两位数减两位数不退位)的计算方法。

26、探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。

27、可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。

28、渗透统计的思想和方法。

29、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

30、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

31、厘米和米

32、笔算减法

33、连加、连减和加减混合运算的运算顺序:从左到右依次计算。对于有括号的算式,要先计算括号里面的,再计算括号外面的。

34、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

35、观察物体时,要抓住物体的特征来判断。

36、理解相同数位上的数才能相加的道理;掌握笔算的计算法则,能熟练计算;

37、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

38、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

39、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。

40、同分母分数的加减法。(分母不变,分子相加或相减。)

41、角各部分的名称:一个角有一个顶点,两条边。如右图。顶点

42、要知道一个角是不是直角,可以用三角板上的直角比一比:顶点对顶点,一边对一边,再看另一边。

43、三角形的面积=底×高÷2:S=ah÷2。

44、长方体的体积=长×宽×高:V=abh。

45、圆柱的侧面积=底面圆的周长×高:S=ch。

46、常用的长度单位:米、厘米。

47、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

48、差=被减数-减数

49、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

50、乘法算式的写法和读法


初一数学上册知识点总结 50句菁华(扩展5)

——五年级上册数学知识点 50句菁华

1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、用计算器来验算

6、有限小数:小数部分的位数是有限的小数,叫做有限小数。

7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

8、长方形面积=长×宽字母公式:s=ab

9、组合图形:转化成已学的简单图形,通过加、减进行计算。

10、重叠法;

11、分割*移法;

12、公式计算面积法;

13、三角形面积=底×高÷2(s三=ah÷2)

14、1*方千米=100公顷=1000000*方米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、求近似数的方法一般有三种:(P10)

17、(P11)小数四则运算顺序跟整数是一样的。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、(关于“大约)应用题:

20、圆柱的侧面积=底面圆的周长×高:S=ch。

21、长方形的周长=(长+宽)×2:C=(a+b)×2。

22、*行四边形的面积=底×高:S=ah。

23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。

24、圆的面积=圆周率×半径×半径:s=πr2。

25、三角形的面积=底×高÷2 S=ah÷2

26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。

28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

31、所有的方程都是等式,但等式不一定都是方程。

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

33、身份证码: 18 位

34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

35、可以表示起点

36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

38、表示相等关系的式子叫做等式。

39、方程一定是等式;等式不一定是方程。等式>方程

40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?

43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

44、求近似数的方法一般有三种:

45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

46、除法中的变化规律:

47、有些事件的发生是确定的,有些是不确定的。 可能

48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

49、正方形里最大的圆。两者联系:边长=直径

50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


初一数学上册知识点总结 50句菁华(扩展6)

——高一化学知识点总结 50句菁华

1、碳酸

2、氯化钙与碳酸钠溶液反应

3、氧化铁与盐酸反应:fe2o3 + 6hcl = 2fecl3 + 3h2o

4、合金的定义

5、概念

6、影响化学*衡的因素

7、元素的化合价与最外层电子数的关系:最高正价等于最外层电子数(氟氧元素无正价)负化合价数= 8—最外层电子数(金属元素无负化合价)

8、同主族、同周期元素的结构、性质递变规律:同主族:从上到下,随电子层数的递增,原子半径增大,核对外层电子吸引能力减弱,失电子能力增强,还原性(金属性)逐渐增强,其离子的氧化性减弱。同周期:左→右,核电荷数——→逐渐增多,最外层电子数——→逐渐增多原子半径——→逐渐减小,得电子能力——→逐渐增强,失电子能力——→逐渐减弱氧化性——→逐渐增强,还原性——→逐渐减弱,气态氢化物稳定性——→逐渐增强最高价氧化物对应水化物酸性——→逐渐增强,碱性——→逐渐减弱

9、自发的氧化还原反应

10、物理性质:无色、无味的气体,极难溶于水,密度小于空气,俗名:沼气、坑气

11、结构:不饱和烃,分子中含碳碳双键,6个原子共*面,键角为120°

12、金属活动顺序与金属冶炼的关系:金属活动性序表中,位置越靠后,越容易被还原,用一般的还原方法就能使金属还原;金属的位置越靠前,越难被还原,最活泼金属只能用最强的还原手段来还原。(离子)

13、物质的组成

14、化学反应速率的表示方法___________。

15、理论解释——有效碰撞理论

16、化学*衡状态的特征

17、判断化学*衡状态的依据

18、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。

19、物质的量(n)是表示含有一定数目粒子的集体的物理量。

20、物质的量=物质所含微粒数目/阿伏加德罗常数n=N/NA

21、物质的量浓度、

22、铝与氢氧化钠溶液反应:2al+2naoh+2h2o=2naalo2+3h2↑

23、HSO4―在水溶液中拆开写,在熔融状态下不拆开写。

24、氧化还原反应中概念及其相互关系如下:

25、物理变化中分子不变,化学变化中原子不变,分子要改变。常见的物理变化:蒸馏、分馏、焰色反应、胶体的性质(丁达尔现象、电泳、胶体的凝聚、渗析、布朗运动)、吸附、蛋白质的盐析、蒸发、分离、萃取分液、溶解除杂(酒精溶解碘)等。

26、掌握化学反应分类的特征及常见反应:

27、同素异形体一定是单质,同素异形体之间的物理性质不同、化学性质基本相同。红磷和*、O2和O3、金刚石和石墨及C60等为同素异形体,H2和D2不是同素异形体,H2O和D2O也不是同素异形体。同素异形体相互转化为化学变化,但不属于氧化还原反应。

28、同系物、同分异构是指由分子构成的化合物之间的关系。

29、酸的强弱关系:(强)HClO4、HCl(HBr、HI)、H2SO4、HNO3>(中强):H2SO3、H3PO4>(弱):CH3COOH>H2CO3>H2S>HClO>C6H5OH>H2SiO3

30、既能与酸反应又能与碱反应的物质是两性氧化物或两性氢氧化物,如SiO2能同时与HF/NaOH反应,但它是酸性氧化物

31、甲酸根离子应为HCOO—而不是COOH—

32、定义:含有碳元素的化合物为有机物(碳的氧化物、碳酸、碳酸盐、碳的金属化合物等除外)

33、同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质(所有的烷烃都是同系物)。

34、化学性质

35、结构: CH3CH2OH(含有官能团:羟基)

36、混合物的分离原理和分离方法。

37、氯气(Cl2):

38、物理性质:无色、稍有气味的气体,比空气略轻,难溶于水。

39、常温下为气体的单质只有H2、N2、O2(O3)、F2、Cl2(稀有气体单质除外)

40、常温下常见的无色液体化合物:H2O、H2O2

41、有刺激性气味的气体:Cl2、SO2、NO2、HX、NH3

42、胶体的应用

43、强电解质:在水溶液里全部电离成离子的电解质。

44、非电解质、弱电解质、难溶于水的物质,气体在反应物、生成物中出现,均写成化学式或分式。

45、浓H2SO4作为反应物和固体反应时,浓H2SO4写成化学式。

46、金属、非金属单质,无论在反应物、生成物中均写成化学式。微溶物作为反应物时,处于澄清溶液中时写成离子形式;处于浊液或固体时写成化学式。

47、金刚石(C)是自然界中最硬的物质,可用于制钻石、刻划玻璃、钻探机的钻头等。

48、石墨(C)是最软的矿物之一,有优良的导电性,润滑性。可用于制铅笔芯、干电池的电极、电车的滑块等

49、碳的化学性质跟氢气的性质相似(常温下碳的性质不活泼)

50、、二氧化碳多环境的影响:过多排放引起温室效应。


初一数学上册知识点总结 50句菁华(扩展7)

——数学圆知识点总结 40句菁华

1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

2、定理:一条弧所对的圆周角等于它所对的圆心角的一半

3、①直线L和⊙O相交d﹤r

4、推论:经过切点且垂直于切线的直线必经过圆心

5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

6、圆的外切四边形的两组对边的和相等

7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

8、①两圆外离d﹥R+r

9、正三角形面积√3a2/4a表示边长

10、弧长计算公式:L=n兀R/180

11、圆心决定圆的位置,半径决定圆的大小。

12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

14、两个数相除,又叫做这两个数的比。比的后项不能为0.

15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、定理相交两圆的连心线垂直*分两圆的公共弦

20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

22、内公切线长= d-R-r外公切线长= d-R+r

23、定理一条弧所对的圆周角等于它所对的圆心角的一半

24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

26、一条弧所对的圆周角等于它所对的圆心角的一半。

27、圆的面积S=πr

28、圆锥侧面积S=rl

29、圆的标准方程

30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。

32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

33、圆的周长C=2πr=πd

34、圆锥侧面积S=πrl

35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧

36、①直线L和⊙O相交 d

37、切线的性质定理 圆的切线垂直于经过切点的半径

38、正n边形的每个内角都等于(n-2)×180°/n

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3