位置 > 首页 > 句子 >

初一数学上册知识点总结 50句菁华

日期:2022-12-02 00:00:00

1、课后及时复习,温故而知新

2、正方体的*面展开图:

3、数轴:

4、有理数的运算:

5、添括号法则

6、直线的性质

7、圆:

8、等式的性质

9、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

10、角∠(angle)也是一种基本的几何图形.

11、等角的补角相等,等角的余角相等.

12、方程:含有未知数的等式就叫做方程.

13、解:解出所列方程.

14、有理数的概念

15、不等式解集的表示方法:

16、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

17、一元一次不等式与一次函数的综合运用:

18、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

19、解一元一次不等式组的步骤:

20、过一点有且只有一条直线和已知直线垂直

21、直线外一点与直线上各点连接的所有线段中,垂线段最短

22、两直线*行,内错角相等

23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24、在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

25、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

26、定义:*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。水*的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为*面直角坐标系的原点。

27、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

28、几何图形的组成

29、点动成线,线动成面,面动成体。

30、①直线公理:过两点有且只有一条直线.

31、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

32、培养学生获取信息,分析问题,处理问题的能力。

33、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

34、大于0的数是正数。

35、规定了原点,单位长度,正方向的直线称为数轴。

36、数的大小比较:

37、若a+b=0,则a,b互为相反数

38、乘除:同号得正,异号的负

39、相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

40、实数大小的比较:利用法则比较大小;利用数轴比较大小。

41、相遇问题:速度和×相遇时间=路程和

42、追赶问题:速度差×追赶时间=追赶距离

43、商品销售问题

44、储蓄问题

45、多项式:;

46、把多项式中的同类项合并成一项,叫做合并同类项;

47、方程的概念:

48、去分母

49、列方程解应用题的一般步骤:

50、任何数同零相乘都得零;


初一数学上册知识点总结 50句菁华扩展阅读


初一数学上册知识点总结 50句菁华(扩展1)

——六年级数学上册知识点 60句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、两个小数的比,向右移动小数点的位置。也是先化成整数比。

3、3 32

4、条形统计图:可以清楚的看出数据的多少

5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

6、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

8、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

9、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

10、被除数÷除数= 被除数/除数

11、因为零不能作除数,所以分数的分母不能为零。

12、乘法分配律:

13、整数减法计算法则:

14、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

15、混合运算用梯等式计算,等号写在第一个数字的左下角。

16、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

17、找单位“1”的方法

18、1的倒数是1,0没有倒数。

19、被除数与商的大小关系

20、20是25的几分之几? 20÷25=4/5

21、已知单位“1”用乘法,求单位“1”用除法;

22、工程问题

23、一个数乘分数的意义就是求一个数的几分之几是多少。

24、求一个数的几分之几是多少?(用乘法)

25、什么是速度?

26、求一个数的百分之几是多少。一个数(单位“1”)×百分率

27、已知一个数的百分之几是多少,求这个数。

28、常用统计图的优点:

29、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

30、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

31、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

32、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

33、百分数应用:

34、圆的定义:

35、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

36、半径为1厘米的圆的周长是3.14厘米。(__)

37、这个月哪项出最多?支出了多少元?

38、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

39、常见的百分率的计算方法:

40、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

41、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

42、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)

43、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

44、除数是整数的小数除法计算法则:

45、圆锥体

46、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

47、化简比:化简之后结果还是一个比,不是一个数。

48、比和除法、分数的区别:

49、已知单位“1”的量用乘法。

50、画线段图:

51、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

52、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

53、比和比例的意义:

54、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

55、“数与形相结合”的思想

56、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

57、圆的半径越长,这个圆就越大。(__)

58、画一个半径为1厘米的圆。

59、直角梯形的高与上底都是(__),下底是(__),面积是(__)。

60、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?


初一数学上册知识点总结 50句菁华(扩展2)

——六年级数学上册知识点 50句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、用比的前项和后项同时除以它们的最大公约数。

3、用表格方式解决有局限性,数目必须小,例:

4、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

5、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

6、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

7、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

8、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

9、如果两个数是互质数,它们的公因数就是1。

10、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

11、减法的性质:

12、整数减法计算法则:

13、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

14、圆的面积=圆周率×半径×半径

15、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

16、成轴对称图形的特征和性质:

17、物体旋转时应抓住三点:

18、分数乘整数的计算方法

19、已知A比B多(或少)几分之几,求A的解题方法

20、1的倒数是1,0没有倒数。

21、分数四则混合运算的运算顺序

22、工程问题

23、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

24、一个数乘分数的意义就是求一个数的几分之几是多少。

25、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;

26、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

27、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

28、百分数的意义:

29、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

30、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

31、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)

33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

34、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

35、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、小数乘法意义:

38、、长方形

39、化简比:化简之后结果还是一个比,不是一个数。

40、比和除法、分数的区别:

41、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

42、圆面积公式的推导

43、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

44、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

45、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

46、在同一个圆中最长的一条线段是(__)。

47、两个圆的大小一样,它们的半径一定相等。(__)

48、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)

49、经过圆心的线段一定是直径。(__)

50、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)


初一数学上册知识点总结 50句菁华(扩展3)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


初一数学上册知识点总结 50句菁华(扩展4)

——五年级上册数学知识点 60句菁华

1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

2、理解用字母表示数的意义和作用;

3、理解简易方程的意思及其解法;

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、计算小数乘法末尾对齐,按整数乘法法则进行计算。

7、把因数的位置交换相乘

8、三角形面积=底×高÷2字母公式:s=ah÷2

9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2

10、重叠法;

11、公式计算面积法;

12、正方形周长=边长×4 C = 4 a

13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

14、1*方米=100*方分米=10000*方厘米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、因数末尾有几个0,就在积的末尾添上几个0。

17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

20、长方形的面积=长×宽:S=ab。

21、长方形的周长=(长+宽)×2 C=(a+b)×2

22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

23、直径=半径×2 d=2r半径=直径÷2 r= d÷2

24、长方体的体积=长×宽×高公式:V = abh

25、长方体(或正方体)的体积=底面积×高公式:V = abh

26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

31、所有的方程都是等式,但等式不一定都是方程。

32、三角形面积公式推导:旋转

33、等底等高的*行四边形面积相等;

34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。

35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

36、封闭图形一周的长度,就是它的周长。

37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。

40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

41、只有1个因数。“1”既不是质数,也不是合数。

42、表示相等关系的式子叫做等式。

43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

45、1992所有的质因数的和是( 88 )。

46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?

48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?

49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

50、<<1,□里可以填的自然数有( )。[写出所有可能]

51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

52、在实际应用中,小数除法所

53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)

55、长方形里最大的圆。两者联系:宽=直径

56、同一个圆内的所有线段中,圆的直径是最长的。

57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

60、半圆的面积是圆面积的一半。S半圆=r22


初一数学上册知识点总结 50句菁华(扩展5)

——数学知识点 50句菁华

1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

2、利用等底等高的两个三角形面积相等。

3、利用特殊规律

4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

5、大于0的数叫做正数。

6、在正数前面加上负号“-”的数叫做负数。

7、整数和分数统称为有理数。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、一个加数=和—另一个加数

10、被减数=减数+差

11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

13、进行检验,写出答案。

14、加法意义和运算定律

15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

17、求一个数的几分之几是多少?(用乘法)

18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

19、同角或等角的补角相等

20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半

21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

22、乘法分配律:a × b + a × c = a ×(b + c)

23、知道除法算式中各部分的名称:被除数、除数、商。

24、被除数末尾0前面能被除尽,0应写在4的下方。

25、除法的应用p44

26、单价、数量、总价p45、46

27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

31、比的后项不能为0。

32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

33、解比例式

34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)

35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

36、数的分类及概念数系表:

37、绝对值:①定义(两种):

38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

39、求函数的最值与值域的区别和联系

40、定义

41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。

42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

43、调查方式:

44、韦达定理

45、三角形内角和定理:

46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

48、相似三角形判定定理1

49、正n边形的每个内角都等于(n-2)×180°/n

50、弧长计算公式:L=n兀R/180——》L=nR


初一数学上册知识点总结 50句菁华(扩展6)

——高三物理知识点总结 50句菁华

1、变压器:

2、机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括*动,转动和振动等运动形式。为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动。

3、影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

4、伏安法测电阻原理:R=伏安法测电功率原理:P=UI

5、串联电路中:电压、电功和电功率与电阻成正比

6、17世纪,德国天文学家开普勒提出开普勒三大定律;

7、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

8、★洛伦兹力

9、主要测量:

10、根据牛顿运动定律,向心力与向心加速度的因果关系是,两者方向恒一致:总是与速度垂直、沿半径指向圆心。

11、做匀速圆周运动的物体所受合外力全部作为向心力,故物体所受合外力应大小不变、方向始终与速度方向垂直;合外力只改变速度的方向,不改变速度 的大小.根据公式,倘若物体所受合外力F大于在某圆轨道运动所需向心力,物体将速率不变地运动到半径减小的新圆轨道里(在那里,物体的角速度将增大),使 物体所受合外力恰等于该轨道上所需向心力,可见物体在此时会做靠近圆心的运动;反之,倘若物体所受合外力小于在某圆轨道运动所需向心力,“向心力不足”, 物体运动的轨道半径将增大,因而逐渐远离圆心.如果合外力突然消失,物体将沿切线方向飞出,这就是离心运动。

12、对于初速度为零的匀加速直线运动

13、匀强电场中,任意两点连线中点的电势等于这两点的电势的*均值。在任意方向上电势差与距离成正比。

14、导体棒围绕棒的一端在垂直磁场的*面内做匀速圆周运动而切割磁感线产生的电动势E=BL2ω/2。

15、只有正弦交流电,物理量的最大值和有效值才存在21/2倍的关系。对于其他的交流电,需根据电流的热效应来确定有效值。

16、相距半波长的奇数倍的两质点,振动情况完全相反;相距半波长的偶数倍的两质点,振动情况完全相同。

17、小孔成像是倒立的实像,像的大小由光屏到小孔的距离而定。

18、完全非弹性碰撞(碰撞后连成一个整体)中,动量守恒,机械能不守恒,且机械能损失最大。

19、根据电场线判断:沿着电场线电势降低。φA>φB

20、电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

21、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

22、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

23、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

24、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

25、合位移和分位移,合速度和分速度,和加速度与分加速度均遵守*行四边形定则;

26、*抛运动的实质:物体在水*方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

27、数学表达式:w合=mvt2/2-mv02/2

28、分析受力要仔细,定量计算七种力;重力有无看

29、确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。

30、电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。

31、nbsω是最大值,有效值用热量来计算。

32、确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。

33、原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。

34、电势的概念

35、路程和位移

36、x—t图象(即位移图象)

37、两种打点即使器的异同点

38、纸带分析;

39、理解牛顿第二定律的要点:

40、若物体受三力*衡,封闭三角形法最简捷。若物体受四力或四力以上*衡,用正交分解法

41、实验部分:

42、能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。

43、太阳能

44、近地卫星与同步卫星

45、电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

46、光的干涉

47、干涉区域内产生的亮、暗纹

48、衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

49、自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。

50、匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。


初一数学上册知识点总结 50句菁华(扩展7)

——数学初中全部重要知识点总结 40句菁华

1、方程与方程组

2、点,线,面

3、角

4、同角或等角的补角相等

5、同角或等角的余角相等——余角=90-角度。

6、如果两条直线都和第三条直线*行,这两条直线也互相*行

7、同位角相等,两直线*行

8、内错角相等,两直线*行

9、三角形内角和定理:

10、角边角公理(

11、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

12、等腰三角形的性质定理

13、多边形内角和定理

14、*行四边形性质定理2

15、*行四边形性质定理3

16、*行四边形判定定理4

17、菱形判定定理1

18、等腰梯形性质定理

19、*行线分线段成比例定理

20、相似三角形判定定理1

21、判定定理2

22、性质定理1

23、性质定理3

24、圆的外部可以看作是圆心的距离大于半径的点的集合

25、切线的判定定理

26、切线的性质定理

27、正n边形的每个内角都等于(n-2)×180°/n

28、扇形面积公式:S扇形=n兀R^2/360=LR/2

29、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

30、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

31、列方程解应用题的常用公式:

32、反证法

33、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

34、中被开方数的取值范围:被开方数a≥0

35、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0

36、相反数:

37、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

38、有理数加法法则:

39、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

40、有理数乘法的运算律:

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3