位置 > 首页 > 句子 >

高考数学知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

2、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

3、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

4、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

5、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

6、.数量积与两个实数乘积的区别:

7、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

8、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

9、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

10、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

11、两条异面直线所成的角的范围:0°<α≤90°< p="">

12、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

13、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

14、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

15、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。

16、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

17、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

18、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

19、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

20、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。

21、注意放回抽样,不放回抽样;

22、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

23、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

24、如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

25、列举法:{a,b,c……}

26、“包含”关系—子集

27、“相等”关系:A=B (5≥5,且5≤5,则5=5)

28、不含任何元素的集合叫做空集,记为

29、方程k=f(x)有解 k∈D(D为f(x)的值域);

30、a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

31、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

32、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

33、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

34、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

35、主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

36、集合元素具有

37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

38、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

39、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

40、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;


高考数学知识点总结 40句菁华扩展阅读


高考数学知识点总结 40句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、如果两条直线都和第三条直线*行,这两条直线也互相*行

2、两直线*行,同旁内角互补

3、角边角公理(

4、定理3

5、勾股定理

6、*行四边形性质定理2

7、*行四边形判定定理3

8、矩形判定定理1

9、矩形判定定理2

10、几种几何图形的重心:

11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

12、乘方的定义:

13、*行于三角形的一边,并且和其他两边相交的直线,

14、相似三角形判定定理1

15、混合运算法则:先乘方,后乘除,最后加减。

16、几何图形

17、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

18、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

19、性质定理3

20、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

21、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

22、圆是定点的距离等于定长的点的集合

23、圆的外部可以看作是圆心的距离大于半径的点的集合

24、同圆或等圆的半径相等

25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、角的度量

29、角的*分线

30、角的性质

31、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

32、①直线L和⊙O相交

33、一元一次方程

34、切割线定理

35、有理数加法

36、正三角形面积√3a^2/4

37、弧长计算公式:L=n兀R/180——》L=nR

38、列一元一次方程解应用题:

39、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

40、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

41、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

42、三角形内角和定理:三角形三个内角的和等于180°

43、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。

44、等腰三角形的判定:等角对等边。

45、等边三角形的判定:三个角都相等的三角形是等腰三角形。

46、s菱=争6(n、6分别为对角线长)

47、单项式的系数:是指单项式中的数字因数;

48、对称性:等腰梯形是轴对称图形

49、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

50、推论2经过切点且垂直于切线的直线必经过圆心

51、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

52、扇形面积公式:S扇形=n兀R^2/360=LR/2

53、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

54、求出每段的解析式.

55、函数图象的最低点和最高点.

56、一元一次方程根的情况

57、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

58、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

59、大于0的数叫做正数。

60、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

61、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

62、四边形

63、图形的*移和旋转

64、统计

65、如果两条直线都和第三条直线*行,这两条直线也互相*行。

66、同位角相等,两直线*行。

67、两直线*行,内错角相等。

68、推论1直角三角形的两个锐角互余。

69、推论2三角形的一个外角等于和它不相邻的两个内角的和。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、定理四边形的内角和等于360°。

72、*行四边形性质定理1*行四边形的对角相等。

73、*行四边形性质定理2*行四边形的对边相等。

74、*行四边形判定定理4一组对边*行相等的四边形是*行四边形。

75、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。

76、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

77、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰。

78、*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。

79、性质定理2相似三角形周长的比等于相似比。

80、圆的内部可以看作是圆心的距离小于半径的点的集合。

81、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧。

82、推论2圆的两条*行弦所夹的弧相等。

83、圆是以圆心为对称中心的中心对称图形。

84、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

85、定理相交两圆的连心线垂直*分两圆的公共弦。

86、弧长计算公式:L=n兀R/180。

87、乘法与因式分解

88、三角不等式

89、判别式:

90、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

91、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

92、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

93、*行:两条直线不相交。互相*行的两条直线,互为*行线。a∥b(在同一*面内,不相交的两条直线叫做*行线。)

94、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)

95、证明:推理的过程叫做证明。

96、坐标:数轴(或*面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。

97、原点:两个数轴的交点叫做*面直角坐标系的原点。

98、特殊位置的点的坐标的特点:

99、三大规律

100、一元一次不等式:含有一个未知数,未知数的次数是1的不等式。


高考数学知识点总结 40句菁华(扩展2)

——高等数学知识点总结 50句菁华

1、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

2、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

3、掌握不定积分的换元积分法。

4、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。

5、掌握可分离变量的微分方程,会用简单变量代换 解某些微分方程。

6、会解欧拉方程。

7、能力层面

8、做题之后加强反思。

9、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

10、列方程解应用题的常用公式:

11、有理数:①整数→正整数,0,负整数;

12、方程与方程组

13、角

14、同角或等角的补角相等

15、同角或等角的余角相等——余角=90-角度。

16、直线外一点与直线上各点连接的所有线段中,垂线段最短

17、同旁内角互补,两直线*行

18、两直线*行,内错角相等

19、定理

20、三角形内角和定理:

21、推论3

22、全等三角形的对应边、对应角相等

23、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

24、*行四边形性质定理1

25、矩形判定定理2

26、菱形性质定理1

27、菱形面积=对角线乘积的一半,即S=(a×b)÷2

28、菱形判定定理2

29、正方形性质定理1

30、等腰梯形判定定理

31、*行线分线段成比例定理

32、相似三角形判定定理1

33、判定定理2

34、性质定理1

35、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

36、切线的判定定理

37、圆的外切四边形的两组对边的和相等

38、如果两个圆相切,那么切点一定在连心线上

39、正n边形的每个内角都等于(n-2)×180°/n

40、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

41、弧长计算公式:L=n兀R/180——》L=nR

42、绝对值:

43、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

44、混合运算法则:先乘方,后乘除,最后加减。

45、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

46、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

47、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

48、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

49、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

50、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用


高考数学知识点总结 40句菁华(扩展3)

——数学知识点总结 40句菁华

1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

3、2.1直线与*面*行的判定

4、2.2*面与*面*行的判定

5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。

6、2.3—2.2.4直线与*面、*面与*面*行的性质

7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。

8、定理:垂直于同一个*面的两条直线*行。

9、Venn图:

10、“相等”关系:A=B(5≥5,且5≤5,则5=5)

11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

12、圆的外部可以看作是圆心的距离大于半径的点的集合

13、到已知角的两边距离相等的点的轨迹,是这个角的*分线

14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

15、定理不在同一直线上的三点确定一个圆。

16、圆是以圆心为对称中心的中心对称图形

17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

19、切线的性质定理:圆的切线垂直于经过切点的半径

20、弦切角定理:弦切角等于它所夹的弧对的圆周角

21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

22、弧长计算公式:L=n兀R/180

23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

25、圆方程

26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

30、集合的分类:有限集,无限集,空集。

31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

32、根据自变量的取值范围对函数进行分段.

33、空间中的*行问题

34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

35、忽视集合元素的三性致误

36、函数的单调区间理解不准致误

37、三角函数的单调性判断致误

38、对数列的定义、性质理解错误

39、数列中的最值错误

40、忽视三视图中的实、虚线致误


高考数学知识点总结 40句菁华(扩展4)

——中考数学知识点 60句菁华

1、一元二次方程3x2+5x-2=0的常数项是-2.

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

3、反比例函数的图象在第一、三象限

4、经过圆心*分弦的直径垂直于弦。

5、直线与圆有唯一公共点时,叫做直线与圆相切。

6、三角形的外接圆的圆心叫做三角形的外心。

7、运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

8、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

9、指数

10、乘法公式:(正、逆用)

11、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

12、样本容量:样本中个体的数目。

13、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的*均数)

14、线段的中点及表示

15、角(*角、周角、直角、锐角、钝角)

16、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

17、重要辅助线

18、作图:任意等分线段。

19、一元一次方程的解法:去分母→去括号→移项→合并同类项→

20、行程问题(匀速运动)

21、增长率问题:

22、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

23、"等积"变"比例","比例"找"相似"。

24、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

25、各象限内点的坐标的特点

26、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

27、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

28、圆的定义(两种)

29、垂径定理及其推论

30、五种位置关系及判定与性质:(重点:相切)

31、两圆的公切线:⑴定义⑵性质

32、扇形面积公式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、y的变化值与对应的x的变化值成正比例,比值为k

35、当x=0时,b为函数在y轴上的截距。

36、k,b与函数图像所在象限:

37、当时间t一定,距离s是速度v的一次函数。s=vt。

38、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)

39、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

41、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

42、“三点定圆”定理

43、“等对等”定理及其推论

44、代数式变形中如果有绝对值、*方时,里面的数开出来要注意正负号的取舍。

45、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

46、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

47、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

48、解方程原理:天**衡。

49、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

50、*行四边形面积公式推导:剪拼、*移

51、数不仅可以用来表示数量和顺序,还可以用来编码。

52、身份证码: 18 位

53、重心到顶点的距离与重心到对边中点的距离之比为2:1。

54、直角坐标系中,点A(3,0)在y轴上。

55、当x=-1时,函数y=的值为1.

56、函数y=-8x是一次函数。

57、函数y=4x+1是正比例函数。

58、反比例函数的图象在第一、三象限。

59、cos30= 。

60、勾股定理:两直角边*方和等于斜边*方


高考数学知识点总结 40句菁华(扩展5)

——小学数学知识点 50句菁华

1、加减混合运算:

2、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

3、从高位起,按照顺序写;

4、哪一位上乘得的积满几十就向前进几。

5、万级的数要按个级的读法来读,再在后面加上一个“万”字;

6、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

7、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

8、检验、写出答案。

9、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

10、公式(每两个相邻的时间单位之间的进率是60):

11、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。

12、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

13、在计算长度时,只有相同的长度单位才能相加减。

14、公式:

15、多位数乘一位数(进位)的笔算方法:

16、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

17、加法和乘法的改写,如:5+5+5+5写成乘法算式:5×4或4×5 ;反之,乘法也可改写成加法。如:8×4=8+8+8+8 (在忘记乘法口诀或口诀记不准时,可把乘法算式改写成加法算式来计算。)加法写成乘法时,加法的和与乘法的积相同。

18、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

19、先看图,再填空★★★ ★★★ ★★★ ★★★

20、数一数

21、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

22、物体的表面或封闭图形的大小,就是他们的面积。

23、边长1分米的正方形面积是1*方分米。

24、边长1千米(1000米)的正方形面积是1*方千米。

25、长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽

26、学会用“正”字记录数据。

27、解决有关*均分问题的方法:

28、汽车在笔直的公路上行驶,车身的运动是( )现象

29、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

30、小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

31、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

32、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

33、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

34、10个一千是一万。

35、(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

36、已知一个数的百分之几是多少,求这个数。

37、利率

38、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

39、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

40、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

41、加数+加数=和和-一个加数=另一个加数

42、学会用加法解决简单的实际问题。

43、搭积木(十几加(减)几的加减法)知识点:(1)用形象的积木,帮助学生认识不进位加法和不退位减法。(即在原有的基础上增加为加法,减少为减法。)

44、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

45、连加:多个数字连续相加叫做连加。例如:28+24+23=85

46、连减:多个数字连续相减叫做连减。例如:85-40-26=19

47、加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70

48、圆的周长总是直径的三倍多一些。

49、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

50、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。


高考数学知识点总结 40句菁华(扩展6)

——初中数学重要知识点总结 40句菁华

1、求不等式的解集的过程,叫做解不等式。

2、用数轴表示不等式的方法。

3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

5、一元一次不等式组的解法

6、不等式与不等式组

7、列一元一次方程解应用题:

8、混合运算法则:先乘方,后乘除,最后加减。

9、代数式

10、解一元二次方程的步骤:

11、角

12、同角或等角的余角相等——余角=90-角度。

13、过一点有且只有一条直线和已知直线垂直

14、直线外一点与直线上各点连接的所有线段中,垂线段最短

15、同位角相等,两直线*行

16、同旁内角互补,两直线*行

17、推论

18、三角形内角和定理:

19、推论1

20、直角三角形斜边上的中线等于斜边上的一半

21、矩形性质定理1

22、菱形性质定理2

23、三角形中位线定理

24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

26、性质定理1

27、性质定理2

28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

31、切线的性质定理

32、①两圆外离

33、弧长计算公式:L=n兀R/180——》L=nR

34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

35、切线的性质定理圆的切线垂直于经过切点的半径

36、推论1经过圆心且垂直于切线的直线必经过切点

37、定理相交两圆的连心线垂直*分两圆的公共弦

38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正三角形面积√3a/4a表示边长

40、弧长计算公式:L=n兀R/180

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3