位置 > 首页 > 句子 >

五年级上册数学知识点 50句菁华

日期:2022-12-02 00:00:00

1、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、用计算器来验算

6、有限小数:小数部分的位数是有限的小数,叫做有限小数。

7、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

8、长方形面积=长×宽字母公式:s=ab

9、组合图形:转化成已学的简单图形,通过加、减进行计算。

10、重叠法;

11、分割*移法;

12、公式计算面积法;

13、三角形面积=底×高÷2(s三=ah÷2)

14、1*方千米=100公顷=1000000*方米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、求近似数的方法一般有三种:(P10)

17、(P11)小数四则运算顺序跟整数是一样的。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、(关于“大约)应用题:

20、圆柱的侧面积=底面圆的周长×高:S=ch。

21、长方形的周长=(长+宽)×2:C=(a+b)×2。

22、*行四边形的面积=底×高:S=ah。

23、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。

24、圆的面积=圆周率×半径×半径:s=πr2。

25、三角形的面积=底×高÷2 S=ah÷2

26、长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

27、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。

28、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

31、所有的方程都是等式,但等式不一定都是方程。

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水*更合适。

33、身份证码: 18 位

34、3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

35、可以表示起点

36、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

37、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

38、表示相等关系的式子叫做等式。

39、方程一定是等式;等式不一定是方程。等式>方程

40、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

41、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

42、长180厘米,宽45厘米,高18厘米的`木料,至少能锯成不余料的同样大小的正方体木块多少块?

43、某工厂有煤5吨,如果每天烧 吨,这些煤可烧( 5÷ =5÷0.2=25 )天;如果每天烧这些煤的 ,这些煤可烧( 5 )天。

44、求近似数的方法一般有三种:

45、作用:一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。 例:在方格图(*面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在*面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

46、除法中的变化规律:

47、有些事件的发生是确定的,有些是不确定的。 可能

48、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

49、正方形里最大的圆。两者联系:边长=直径

50、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


五年级上册数学知识点 50句菁华扩展阅读


五年级上册数学知识点 50句菁华(扩展1)

——五年级上册数学知识点 60句菁华

1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

2、理解用字母表示数的意义和作用;

3、理解简易方程的意思及其解法;

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、计算小数乘法末尾对齐,按整数乘法法则进行计算。

7、把因数的位置交换相乘

8、三角形面积=底×高÷2字母公式:s=ah÷2

9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2

10、重叠法;

11、公式计算面积法;

12、正方形周长=边长×4 C = 4 a

13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

14、1*方米=100*方分米=10000*方厘米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、因数末尾有几个0,就在积的末尾添上几个0。

17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

20、长方形的面积=长×宽:S=ab。

21、长方形的周长=(长+宽)×2 C=(a+b)×2

22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

23、直径=半径×2 d=2r半径=直径÷2 r= d÷2

24、长方体的体积=长×宽×高公式:V = abh

25、长方体(或正方体)的体积=底面积×高公式:V = abh

26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

31、所有的方程都是等式,但等式不一定都是方程。

32、三角形面积公式推导:旋转

33、等底等高的*行四边形面积相等;

34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。

35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

36、封闭图形一周的长度,就是它的周长。

37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。

40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

41、只有1个因数。“1”既不是质数,也不是合数。

42、表示相等关系的式子叫做等式。

43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

45、1992所有的质因数的和是( 88 )。

46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?

48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?

49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

50、<<1,□里可以填的自然数有( )。[写出所有可能]

51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

52、在实际应用中,小数除法所

53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)

55、长方形里最大的圆。两者联系:宽=直径

56、同一个圆内的所有线段中,圆的直径是最长的。

57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

60、半圆的面积是圆面积的一半。S半圆=r22


五年级上册数学知识点 50句菁华(扩展2)

——六年级上册数学知识点 50句菁华

1、异分母分数加减法计算方法:

2、小数除法法则:

3、连结梯形对角线中点的线段等于两底的一半。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分数乘整数的意义

6、分数乘分数的的计算方法

7、找单位“1”的方法

8、求一个数的几倍、几分之几是多少,用乘法计算。

9、20是25的几分之几? 20÷25=4/5

10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

16、加法交换律:a+b=b+a

17、直接求一个数是另一个数的百分之几一个数÷另一个数

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

21、路程一定,速度比和时间比成反比。

22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。

25、分数应用题基本数量关系(把分数看成比)

26、被除数÷除数=被除数×除数的倒数。

27、自然数和0都是整数。

28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

32、小数点位置的移动引起小数大小的变化

33、被除数 相当于分子,除数相当于分母。

34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

35、、长方体

36、圆形

37、圆柱体

38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

39、分数除法应用题:

40、根据比的基本性质,可以把比化成最简单的整数比。

41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

42、理解并掌握分数除法的计算方法,会进行分数除法计算;

43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;

44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

45、百分数的意义,求一个数是另一个数的百分之几的应用题;

46、小数的倒数:

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、比和比例的意义:

49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。


五年级上册数学知识点 50句菁华(扩展3)

——七年级上册数学知识点 30句菁华

1、2 有理数

2、3 有理数的加减法

3、同号两数相加,取相同的符号,并把绝对值相加。

4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

5、整数和分数统称为有理数(rational number)。

6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

9、两个负数,绝对值大的反而小。

10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

12、有理数中仍然有:乘积是1的两个数互为倒数。

13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

18、把等式一边的某项变号后移到另一边,叫做移项。

19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。

21、角∠(angle)也是一种基本的几何图形。

22、几何图形的投影问题

23、线段、射线、直线的表示方法

24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)

25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。

26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

27、不含字母的项叫做常数项。

28、单项式和多项式统称为整式。

29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。


五年级上册数学知识点 50句菁华(扩展4)

——七年级下册数学知识点总结 40句菁华

1、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。

2、对于数轴上的任意两个点,靠右边的点所表示的数较大。

3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。

4、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

5、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐

6、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。

7、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

8、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。

9、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

10、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

12、两条直线被第三条直线所截:

13、垂直公理:过一点有且只有一条直线与已知直线垂直。

14、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

15、*行线的性质:

16、*面上不相重合的两条直线之间的位置关系为_______或________

17、倒数

18、大于0的数叫做正数(positive number)。

19、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

20、有理数减法法则

21、有理数中仍然有:乘积是1的两个数互为倒数。

22、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

24、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)

25、根据有理数的乘法法则可以得出

26、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

27、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

28、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

29、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

30、包围着体的是面(surface),面有*的面和曲的面两种。

31、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

32、角∠(angle)也是一种基本的几何图形。

33、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角

34、等角的补角相等,等角的余角相等。

35、相反数的几何意义

36、相反数的表示方法

37、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。

38、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

39、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

40、整式加减的一般步骤:


五年级上册数学知识点 50句菁华(扩展5)

——三年级上册数学的知识点归纳 40句菁华

1、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

2、时间单位:时、分、秒,每相邻两个单位之间的进率都是60。

3、计算一段时间,可以用结束的时刻减去开始的时刻。

4、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

5、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

6、两个三位数相加的和:可能是三位数,也有可能是四位数。

7、减法公式:

8、在乘法里,乘数也叫做因数。

9、三位数乘一位数:积有可能是三位数,也有可能是四位数。

10、用相同的小正方形拼长方形或正方形时,拼成的图形长和宽越接近(或长、宽相等)时,周长最短。

11、长方形的周长=(长+宽)×2 正方形的周长=边长×4

12、在身份证编码中,第十七位代码表示性别:单数男性,双数女性。

13、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

14、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

15、常用的时间单位:时、分、秒、年、月、日、世纪等。

16、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

17、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

18、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

19、求一个数的近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

20、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

22、四边形的特点:有四条直的边,有四个角。

23、正方形的特点:有4个直角,4条边相等。

24、长方形和正方形是特殊的*行四边形。

25、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

26、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

27、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

28、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

29、分数大小比较的应用题:工作效率大的快,工作时间小的快。

30、求一个数是(占)另一个数的几分之几,用除法列算式计算。

31、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

32、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

33、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

34、只要是*均分就用(除法)计算。

35、多位数除以一位数(判断商是几位数):

36、记忆大小月的方法

37、普通记时法与24时记时法的转换。

38、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

39、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

40、闰年:2月有29天的月份是*年,*年有365天。


五年级上册数学知识点 50句菁华(扩展6)

——七年级上册生物的知识点 30句菁华

1、生物的特征:

2、生物体的成长与细胞的生长、分裂、分化是分不开的。

3、在显微镜下观察的生物标本,应该薄而透明,光线能透过,才能观察清楚。因此必须制成玻片标本,常用的玻片标本:切片、涂片、装片(注意三者区别,分为临时和永久的)

4、英国物理学家罗伯特.虎克观察软木薄片,发现了细胞。

5、提出问题:光对鼠妇的生活有影响吗?

6、作出假设:光对鼠妇的生活有影响。鼠妇适合生活在阴暗的环境中。

7、生物能进行呼吸

8、生物能排出体内产生的废物

9、生物能对外界刺激做出反应

10、由细胞构成(病毒除外)

11、非生物因素:光、温度、水、空气等

12、生态系统的概念:在一定地域内,生物与环境所形成的统一整体叫生态系统。一片森林,一块农田,一片草原,一个湖泊,等都可以看作一个生态系统。

13、生态系统具有一定的自动调节能力。在一般情况下,生态系统中生物的数量和所占比例是相对稳定的。但这种自动调节能力有一定限度,超过则会遭到破坏。

14、生物圈是一个统一的整体:注意DDT的例子(富集)课本26页。

15、物镜有高倍镜和低倍镜之分,区别如下:

16、细胞的生活需要物质和能量,细胞中的物质可以分为两大类:

17、细胞中的能量转换器:叶绿体(光合作用)和线粒体(呼吸作用,细胞的动力车间)。叶绿体能将光能转变成化学能;线粒体能将细胞中的有机物与氧气结合,经过复杂的过程,释放出氧气和二氧化碳,同时将有机物里的化学能释放出来供细胞利用。

18、生物具有遗传和变异;除病毒外,都是由细胞构成;

19、生物圈的范围:

20、环境对生物的影响

21、写出显微镜各部分的结构及作用

22、观察的物像与实际图像若所需物像在视野的左上方,要想移到视野中央,则应该往左上方方移。

23、多莉羊的例子p55,多莉羊是羊C生出来的,他们却一点都不像。而与为它提供细胞核的羊B很相像,说明:细胞核是遗传信息库。

24、DNA的结构像一个螺旋形的梯子

25、四种组织按照一定的次序构成,并且以其中的一种组织为主,形成

26、细胞是构成生物体的结构和功能的基本单位。

27、根的生长一方面靠分生区增加细胞的数量,一方面要靠伸长区细胞体积的增大。

28、木本植物茎的结构:

29、年轮:

30、植株的生长需要多种无机盐,其中需要量最多的是氮、磷、钾。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3