位置 > 首页 > 句子 >

三年级上册数学知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

2、公式。(每两个相邻的时间单位之间的进率是60)

3、在计算长度时,只有相同的长度单位才能相加减。

4、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

5、读数和写数(读数时写汉字写数时写*数字)

6、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

7、有4条直的边和4个角封闭图形我们叫它四边形。

8、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。

9、四边形的特点:有四条直的边,有四个角。

10、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

11、正方形的特点:有4个直角,4条边相等。

12、公式:

13、连乘的简便计算:

14、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

15、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

16、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

17、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

18、把分数化成小数的方法:用分数的分子除以分母。

19、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

20、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

21、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

22、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

23、*行四边形的特点:对边*行且相等、对角相等。

24、几分之一:把一个物体或一个图形*均分成几份,每一份就是它的几分之一。

25、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

26、关于0的一些规定:

27、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

28、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

29、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

30、认识整千数(记忆:10个一千是一万)

31、读数和写数(读数时写汉字写数时写*数字)

32、要认真审题,弄清题目要求后再做。

33、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。

34、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。

35、用乘法口诀求商时,想除数和几相乘等于被除数。

36、用乘法和除法两步计算解决实际问题的方法:

37、正确理解并熟记相邻的面积单位之间的进率。

38、低级单位——高级单位:数量÷它们间的进率

39、速度和=相遇路程÷相遇时间

40、垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)


三年级上册数学知识点总结 40句菁华扩展阅读


三年级上册数学知识点总结 40句菁华(扩展1)

——三年级上册数学的知识点归纳 40句菁华

1、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

2、时间单位:时、分、秒,每相邻两个单位之间的进率都是60。

3、计算一段时间,可以用结束的时刻减去开始的时刻。

4、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

5、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

6、两个三位数相加的和:可能是三位数,也有可能是四位数。

7、减法公式:

8、在乘法里,乘数也叫做因数。

9、三位数乘一位数:积有可能是三位数,也有可能是四位数。

10、用相同的小正方形拼长方形或正方形时,拼成的图形长和宽越接近(或长、宽相等)时,周长最短。

11、长方形的周长=(长+宽)×2 正方形的周长=边长×4

12、在身份证编码中,第十七位代码表示性别:单数男性,双数女性。

13、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

14、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

15、常用的时间单位:时、分、秒、年、月、日、世纪等。

16、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

17、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

18、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

19、求一个数的近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

20、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

22、四边形的特点:有四条直的边,有四个角。

23、正方形的特点:有4个直角,4条边相等。

24、长方形和正方形是特殊的*行四边形。

25、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

26、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

27、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

28、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

29、分数大小比较的应用题:工作效率大的快,工作时间小的快。

30、求一个数是(占)另一个数的几分之几,用除法列算式计算。

31、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

32、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

33、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

34、只要是*均分就用(除法)计算。

35、多位数除以一位数(判断商是几位数):

36、记忆大小月的方法

37、普通记时法与24时记时法的转换。

38、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

39、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

40、闰年:2月有29天的月份是*年,*年有365天。


三年级上册数学知识点总结 40句菁华(扩展2)

——六年级上册数学知识点总结 40句菁华

1、圆的定义:圆是由曲线围成的一种*面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

7、圆周率实验:

8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。

9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

10、取近似数的方法:

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

13、比例的基本性质是在比例里两内项积等于两外项积。

14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

18、分子分母是互质数的分数叫做最简分数。

19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

21、整数除法计算法则:

22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

26、小数的倒数:

27、各类地形中,什么地形面积?什么最小?

28、这个月哪项出最多?支出了多少元?

29、小数点位置的移动引起小数大小的变化

30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

31、减法的性质:

32、整数乘法计算法则:

33、小数乘法法则:

34、同分母分数加减法计算方法:

35、异分母分数加减法计算方法:

36、小数除法的意义

37、、长方形

38、、长方体

39、三角形

40、圆形


三年级上册数学知识点总结 40句菁华(扩展3)

——小学四年级上册数学知识点总结 40句菁华

1、位数:一个数含有几个数位,就是几位数,如652100是个六位数。

2、按照我国的计数习惯,从右边起,每四个数位是一级。

3、比较数的大小:

4、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

5、ON╱CE:开关及清除屏键,清除显示屏上的内容。

6、国土面积(*、省、市、区等)、海洋面积等特别大的面积适合用*方千米。如

7、长方形面积=长×宽

8、角的大小与角两边的长短没关系。角的大小与*的大小有关系,*得越大,角越大。

9、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。

10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°

11、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。

12、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。

13、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b

14、长方形是特殊的*行四边形,正方形是特殊的*行四边形。正方形是特殊的长方形。

15、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。

16、商的变化规律:

17、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案.

18、做作业的习惯

19、条形统计图的特点:

20、我们学过的统计图有横向条形统计图、纵向条形统计图以及单式统计图和复试统计图。

21、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

22、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

23、差=被减数-减数

24、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。

25、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。

26、验算:没有余数的除法,用商除数,看看是否等于被除数;

27、步骤:、弄清题意,明确已知条件和所求问题;、分析数量关系,确定先算什么,再算什么;

28、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。

29、一定、可能、不可能可以用来描述事件发生的可能性。

30、有些事件发生的可能性是有大小。,数量多,可能性就大;数量少,可能性就小。

31、在一个*面内,不相交的两条直线互相*行,其中一条直线是另一条直线的*行线。

32、多位数的大小比较:

33、“万”“亿”作单位的数:

34、计算工具的认识:算盘,计算器

35、角的大小与角的两边画出的长短没关系。角的大小要看两条边*的'大小,*得越大,角越大。

36、75度=45度+30度

37、一个*行四边形在拉动过程中,面积变化,高变化,周长不变。*行四边形具有易变性。

38、只有一组对边*行的四边形叫梯形。

39、画高:

40、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。


三年级上册数学知识点总结 40句菁华(扩展4)

——高等数学知识点总结 50句菁华

1、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

2、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

3、掌握不定积分的换元积分法。

4、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。

5、掌握可分离变量的微分方程,会用简单变量代换 解某些微分方程。

6、会解欧拉方程。

7、能力层面

8、做题之后加强反思。

9、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

10、列方程解应用题的常用公式:

11、有理数:①整数→正整数,0,负整数;

12、方程与方程组

13、角

14、同角或等角的补角相等

15、同角或等角的余角相等——余角=90-角度。

16、直线外一点与直线上各点连接的所有线段中,垂线段最短

17、同旁内角互补,两直线*行

18、两直线*行,内错角相等

19、定理

20、三角形内角和定理:

21、推论3

22、全等三角形的对应边、对应角相等

23、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

24、*行四边形性质定理1

25、矩形判定定理2

26、菱形性质定理1

27、菱形面积=对角线乘积的一半,即S=(a×b)÷2

28、菱形判定定理2

29、正方形性质定理1

30、等腰梯形判定定理

31、*行线分线段成比例定理

32、相似三角形判定定理1

33、判定定理2

34、性质定理1

35、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

36、切线的判定定理

37、圆的外切四边形的两组对边的和相等

38、如果两个圆相切,那么切点一定在连心线上

39、正n边形的每个内角都等于(n-2)×180°/n

40、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

41、弧长计算公式:L=n兀R/180——》L=nR

42、绝对值:

43、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

44、混合运算法则:先乘方,后乘除,最后加减。

45、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

46、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

47、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

48、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

49、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

50、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用


三年级上册数学知识点总结 40句菁华(扩展5)

——九年级化学下册知识点总结 40句菁华

1、Ca(OH)2+2H3PO4=Ca3(PO4)2↓+6H2O

2、用剩的药品要做到“三不”:即不能放回原瓶,不要随意丢弃,不能拿出实验室,要放到指定的容器里。

3、物理性质:不需要化学变化就表现出来的性质。如颜色、状态、气味、密度、溶解性、挥发性、硬度、熔点、沸点、导电性、导热性、延展性等。

4、化合物:由不同种元素组成的纯洁物。如co2 kclo3 so2 等。

5、分解反应:由一中反应物生成两种或两种以上其他物质的反应。ab ===a +b

6、空气含氧量的测定——过量红磷的燃烧实验p23

7、空气的污染:(空气质量日报、预报)

8、氧气的物理性质:无色无味的气体,密度比空气的密度略大,不易溶于水。在一定的条件下可液化成淡蓝色液体或固化成淡蓝色固体。

9、药品:过氧化氢和二氧化锰或高锰酸钾或氯酸钾和二氧化锰

10、实验装置p34、p35

11、收集方法:密度比空气大——向上排空气法(导管口要伸到集气瓶底处,便于将集气瓶内的空气赶尽)

12、检验方法:用带火星的木条伸入集气瓶内,如果木条复燃,说明该瓶内的气体是氧气。

13、解释在日常生活中,遇到的这些现象::

14、分子与原子的比较:

15、水的净化(1)、加入絮凝剂吸附杂质(吸附沉淀)(2)、过滤(3)、消毒(加氯气或一氧化二氯)

16、硬水和软水

17、构成原子的粒子有三种:质子、中子、电子。但并不是所有的原子都是由这三种粒子构成的。如有一种氢原子中只有质子和电子,没有中子。

18、元素周期表

19、了解原子结构示意图的意义——1-18号元素的原子结构示意图

20、o通常显-2价,氢通常显+1价;金属元素通常显正价;化合价有变价。

21、再计算氮元素的质量分数:

22、还原性c+2cuo==2cu+ co2

23、焦炭 炼钢

24、是温度降到着火点一下

25、纯金属 铜 铁 铝 钛

26、原料:铁矿石,焦炭,空气,石灰石

27、设备:高炉

28、金属资源保护措施:1.防止金属腐蚀;2.金属的回收利用;3.有计划合理的开采矿物;4.寻找金属的代替品

29、密度最小的气体是H2。

30、天然存在最硬的物质是金刚石。

31、加热通入CO2的红色石蕊溶液:红色变为紫色。

32、大理石与稀盐酸:固体逐渐溶解、有使澄清石灰水变浑浊的气体

33、铁丝放入CuSO4溶液中:铁丝表面覆盖一层红色物质,蓝色溶液变成浅绿色。

34、使用过的镊子或钥匙应立即用干净的纸擦干净。

35、从细口瓶里取用试液时,应把瓶塞拿下,倒放在桌上;倾倒液体时,应使标签向着手心,瓶口紧靠试管口或仪器口,防止残留在瓶口的药液流下来腐蚀标签。

36、给药品加热时要把仪器擦干,先进行预热,然后固定在药品的下方加热;加热固体药品,药品要铺*,要把试管口稍向下倾斜,以防止水倒流入试管而使试管破裂;加热液体药品时,液体体积不能超过试管容积的1/3,要把试管向上倾斜45°角,并不能将试管口对着自己或别人四、洗涤仪器:

37、仪器洗干净的标志是:玻璃仪器内壁附着的水既不聚成水滴,也不成股流下。

38、对人体吸入的空气和呼出的气体探究:p10—p12

39、原理caco3+2hcl==cacl2+h2o+co2

40、达到燃烧所需要的最低温度(也叫着火点)


三年级上册数学知识点总结 40句菁华(扩展6)

——高三数学知识点总结 40句菁华

1、证明线面位置关系,一般不需要去建系,更简单;

2、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

3、求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;

4、“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

5、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.

6、单调性和奇偶性

7、等差数列中

8、数列求和的常用方法:

9、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

10、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

11、两非零向量*行(共线)的充要条件

12、*面向量的基本定理:如果e1和e2是同一*面内的两个不共线向量,那么对该*面内的任一向量a,有且只有一对实数,使a= e1+ e2.

13、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

14、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

15、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.

16、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱*行六面体

17、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

18、多项式函数的导数与函数的单调性

19、导数与极值、导数与最值:

20、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

21、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

22、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

23、复合函数的有关问题

24、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

25、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;

26、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

27、棱锥

28、拟柱体

29、直圆锥

30、球缺

31、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

32、注意计数时利用列举、树图等基本方法;

33、注意放回抽样,不放回抽样;

34、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

35、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°

36、函数值域的求法:

37、圆柱体:

38、写出点M的集合;

39、立体几何(1)、证明:垂直(多考查面面垂直)、*行

40、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3