位置 > 首页 > 句子 >

六年级下册数学知识点归纳 40句菁华

日期:2022-12-03 00:00:00

1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

2、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh

3、圆锥体展开图的'绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)

4、圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

5、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

6、两、三位数乘一位数的估算方法

7、求近似数:

8、表示物体个数的数:0、1、2、3、4、5、6 …….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

9、比的意义

10、比例的意义:表示两个比相等的式子叫做比例。

11、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

12、判断这两个量的比值是否一定,比值一定就成正比例关系;

13、带分数的倒数。先把分数化为假分数,然后将分子分母调换位置,即为该数的倒数。

14、负数:

15、0既不是正数,也不是负数,它是正、负数的分界限

16、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

17、圆柱的切割:

18、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

19、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

20、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

21、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

22、33……、

23、看图答题

24、读法:在所读数的前面加上“负”

25、摄氏度

26、从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。

27、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h

28、两个圆柱的半径比是1:a(a>0),高的比是a:1,则它们的体积之比是1:a。

29、利用V=Sh÷3计算圆锥的体积时不要忘记除以3或乘1/3。

30、统计。

31、两条*行线之间的距离处处相等。

32、画高:

33、税率

34、某人闲着无事,在纸上从9一直写到309,它一共写了多少个数字?

35、自然数从1到n,共用了942个数字,n是几?

36、在1、2、3、4、5……499、500.问数字“2”在这些数中一共出现了多少次?

37、统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

38、折线统计图:

39、温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。如果上升用正数表示,那么下降一定用负数表示。

40、多位数乘法法则


六年级下册数学知识点归纳 40句菁华扩展阅读


六年级下册数学知识点归纳 40句菁华(扩展1)

——六年级上册数学知识点 60句菁华

1、同一底上的两底角和为90°的梯形,上下底中点的连线等于上下底中点的一半。

2、0的绝对值是其本身。

3、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

4、除0外,任何数的的0次方等于1。

5、已知单位“1”用乘法计算

6、积与因数的大小关系

7、被除数与商的大小关系

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、图上距离:实际距离=比例尺;

11、图上距离=实际距离×比例尺;

12、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、圆内最长的线段是直径。(__)

15、几个直径和为n的圆的周长=直径为n的圆的周长

16、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

17、半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

18、长方形里最大的圆。两者联系:宽=直径

19、观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

20、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

21、生活中的百分率:

22、直接求一个数是另一个数的百分之几一个数÷另一个数

23、已知比一个数多百分之几的数是多少,求这个数

24、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

25、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

26、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

27、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

28、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

29、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

30、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

31、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

32、小数与百分数互化的规则:

33、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

34、分数应用题基本数量关系(把分数看成比)

35、画线段图:

36、如果两个数是互质数,它们的公因数就是1。

37、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

38、因为零不能作除数,所以分数的分母不能为零。

39、乘法分配律:

40、减法的性质:

41、圆的面积=圆周率×半径×半径

42、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

43、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

44、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

45、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

46、根据比的基本性质,可以把比化成最简单的整数比。

47、化简比:

48、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

49、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

50、使学生能在方格纸上用数对确定位置;

51、百分数的意义,求一个数是另一个数的百分之几的应用题;

52、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

53、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

54、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

55、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

56、比和比例的联系:

57、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

58、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

59、扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

60、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO


六年级下册数学知识点归纳 40句菁华(扩展2)

——六年级上册数学知识点 50句菁华

1、异分母分数加减法计算方法:

2、小数除法法则:

3、连结梯形对角线中点的线段等于两底的一半。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分数乘整数的意义

6、分数乘分数的的计算方法

7、找单位“1”的方法

8、求一个数的几倍、几分之几是多少,用乘法计算。

9、20是25的几分之几? 20÷25=4/5

10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

16、加法交换律:a+b=b+a

17、直接求一个数是另一个数的百分之几一个数÷另一个数

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

21、路程一定,速度比和时间比成反比。

22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。

25、分数应用题基本数量关系(把分数看成比)

26、被除数÷除数=被除数×除数的倒数。

27、自然数和0都是整数。

28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

32、小数点位置的移动引起小数大小的变化

33、被除数 相当于分子,除数相当于分母。

34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

35、、长方体

36、圆形

37、圆柱体

38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

39、分数除法应用题:

40、根据比的基本性质,可以把比化成最简单的整数比。

41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

42、理解并掌握分数除法的计算方法,会进行分数除法计算;

43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;

44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

45、百分数的意义,求一个数是另一个数的百分之几的应用题;

46、小数的倒数:

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、比和比例的意义:

49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。


六年级下册数学知识点归纳 40句菁华(扩展3)

——六年级上册数学知识点总结 40句菁华

1、圆的定义:圆是由曲线围成的一种*面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

5、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

6、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

7、圆周率实验:

8、在一个正方形里画一个的圆,圆的直径等于正方形的边长。

9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

10、取近似数的方法:

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

13、比例的基本性质是在比例里两内项积等于两外项积。

14、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

15、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

16、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

17、小数的意义 :把整数1*均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

18、分子分母是互质数的分数叫做最简分数。

19、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

20、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

21、整数除法计算法则:

22、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

23、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

24、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

25、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

26、小数的倒数:

27、各类地形中,什么地形面积?什么最小?

28、这个月哪项出最多?支出了多少元?

29、小数点位置的移动引起小数大小的变化

30、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

31、减法的性质:

32、整数乘法计算法则:

33、小数乘法法则:

34、同分母分数加减法计算方法:

35、异分母分数加减法计算方法:

36、小数除法的意义

37、、长方形

38、、长方体

39、三角形

40、圆形


六年级下册数学知识点归纳 40句菁华(扩展4)

——中考数学知识点 60句菁华

1、一元二次方程3x2+5x-2=0的常数项是-2.

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

3、反比例函数的图象在第一、三象限

4、经过圆心*分弦的直径垂直于弦。

5、直线与圆有唯一公共点时,叫做直线与圆相切。

6、三角形的外接圆的圆心叫做三角形的外心。

7、运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

8、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

9、指数

10、乘法公式:(正、逆用)

11、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

12、样本容量:样本中个体的数目。

13、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的*均数)

14、线段的中点及表示

15、角(*角、周角、直角、锐角、钝角)

16、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

17、重要辅助线

18、作图:任意等分线段。

19、一元一次方程的解法:去分母→去括号→移项→合并同类项→

20、行程问题(匀速运动)

21、增长率问题:

22、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

23、"等积"变"比例","比例"找"相似"。

24、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

25、各象限内点的坐标的特点

26、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

27、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

28、圆的定义(两种)

29、垂径定理及其推论

30、五种位置关系及判定与性质:(重点:相切)

31、两圆的公切线:⑴定义⑵性质

32、扇形面积公式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、y的变化值与对应的x的变化值成正比例,比值为k

35、当x=0时,b为函数在y轴上的截距。

36、k,b与函数图像所在象限:

37、当时间t一定,距离s是速度v的一次函数。s=vt。

38、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)

39、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

41、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

42、“三点定圆”定理

43、“等对等”定理及其推论

44、代数式变形中如果有绝对值、*方时,里面的数开出来要注意正负号的取舍。

45、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

46、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

47、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

48、解方程原理:天**衡。

49、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

50、*行四边形面积公式推导:剪拼、*移

51、数不仅可以用来表示数量和顺序,还可以用来编码。

52、身份证码: 18 位

53、重心到顶点的距离与重心到对边中点的距离之比为2:1。

54、直角坐标系中,点A(3,0)在y轴上。

55、当x=-1时,函数y=的值为1.

56、函数y=-8x是一次函数。

57、函数y=4x+1是正比例函数。

58、反比例函数的图象在第一、三象限。

59、cos30= 。

60、勾股定理:两直角边*方和等于斜边*方


六年级下册数学知识点归纳 40句菁华(扩展5)

——六年级数学上册知识点 50句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、用比的前项和后项同时除以它们的最大公约数。

3、用表格方式解决有局限性,数目必须小,例:

4、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

5、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

6、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

7、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

8、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

9、如果两个数是互质数,它们的公因数就是1。

10、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

11、减法的性质:

12、整数减法计算法则:

13、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

14、圆的面积=圆周率×半径×半径

15、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

16、成轴对称图形的特征和性质:

17、物体旋转时应抓住三点:

18、分数乘整数的计算方法

19、已知A比B多(或少)几分之几,求A的解题方法

20、1的倒数是1,0没有倒数。

21、分数四则混合运算的运算顺序

22、工程问题

23、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

24、一个数乘分数的意义就是求一个数的几分之几是多少。

25、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;

26、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

27、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

28、百分数的意义:

29、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

30、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

31、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)

33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

34、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

35、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、小数乘法意义:

38、、长方形

39、化简比:化简之后结果还是一个比,不是一个数。

40、比和除法、分数的区别:

41、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

42、圆面积公式的推导

43、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

44、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

45、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

46、在同一个圆中最长的一条线段是(__)。

47、两个圆的大小一样,它们的半径一定相等。(__)

48、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)

49、经过圆心的线段一定是直径。(__)

50、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)


六年级下册数学知识点归纳 40句菁华(扩展6)

——小学数学四年级下册知识点整理归纳 40句菁华

1、加法、减法、乘法和除法统称为四则运算。

2、※:列综合算式时,如果含有乘除法或加减法时,必须先算加减法,一定要给加减法加上小括号。如:章师傅要生产600个零件,已经生产了120个,剩下的要十天完成,*均每天生产多少个?

3、在*面图上标明物*置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具*置,标名称。

4、小数是十进制分数的另一种表现形式。

5、小数分数的转化:

6、小数由整数部分、小数点、小数部分组成的。

7、默写小数的数位顺序表(在数位顺序表中,每相邻两个计数单位间的进率是10)。。

8、小数的写法:整数部分按照整数的写法来写,整数部分是0就写0,再在个位的右下角点小数点;小数部分依次写出每一个数。

9、※:最有最大的一位小数,最小的一位小数是0.1。

10、※:两个整数或小数之间,如果没有小数位数的限制,他们之间的小数有无数个。

11、大数的改写。不是整万或整亿的数改写成用万或亿作单位的数。只要在万位或亿位的右下角点上小数点,并在小数的后面写上万字或亿字即可。再根据小数的性质,把小数末尾的0去掉。如果前面位数不够,用0占位。改写用=。

12、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形有三条高。重点:三角形高的画法。

13、一个三角形中至少有两个锐角,每个三角形都至多有一个直角;每个三角形都至多有一个钝角。可以根据最大的角判断三角形的类型。最大的角是哪类角,就属于那类三角形。最大的角是直角,就是直角三角形。最大的角是钝角,就是钝角三角形。

14、一端植,一端不植:棵数=间隔数

15、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

16、数位顺序表:含有数级、数位和相应的计数单位的表格叫数位顺序表,如下。

17、每相邻两个计数单位之间的进率都是“十”。

18、省略尾数(求近似数):先分级,再看省略的最高位上的数,用四舍五入法进一或舍去。省略亿位后面的尾数时,要看千万位,省略万位后面的尾数时,要看千位。(用 “≈”)0~4为“舍”,尾数清零且精确数位的数字不变,5~9为“入”,尾数清零且精确数位上的数字加1。注意:四舍五入后的结果是近似数,所以符号一定要用“≈”.

19、十进制计数法:每相邻两个计数单位之间的进率都是十,这种计数方法叫十进制计数法。

20、计算工具的认识:

21、线段:是直线的一部分,具有2个端点,可以度量长度,不可延长。

22、直线:没有端点(或者说“有0个端点”),可以向两端无限延长,不可度量。

23、因数中间有0的乘法:注意用两位数去乘三位数时,三位数中间的0也要乘,不要忘记加上进上来的数。

24、常见的数量关系 :

25、周巷镇中心小学四年级在校中餐生约有210人,按每生每餐200克米饭计算,那么准备一期中餐(共25餐)约需多少千克大米?

26、小明原有30本书,他给小英4本书后,两人的本书同样多。小英原有几本书?

27、小明原有40本书,小英原有30本书。小明给小英多少本书后,两人同样多?

28、同一*面内两条直线的位置关系:相交和不相交两种。

29、垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

30、*行线的性质:两条*行线之间的距离处处相等。

31、*行四边形和梯形的概念:两组对边分别*行的四边形叫做*行四边形;

32、*行四边形的底和高:从*行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做*行四边形的高,垂足所在的边叫做*行四边形的底。*行四边形有无数条高,但是从一个顶点向对边只能画一条高。画高要用虚线。并做出垂足记号

33、图形的拼组(请自己画画看):

34、对称轴:

35、在以下4种情况的时候需要用到除法:

36、除数是整十数的笔算除法分为五步:一看,确定商的位置;二试,确定首先商几;三乘减,把商和除数乘起来再用被除数来减乘积;四比,比除数和余数的大小,余数一定要比除数小;五落,把被除数的个位落下来。

37、除数是两位数的除法的计算方法:

38、解决问题应当注意的要点:

39、由统计表画统计图的步骤和注意要点:

40、解决合理安排时间问题需要按以下步骤进行:


六年级下册数学知识点归纳 40句菁华(扩展7)

——高二数学知识点归纳 40句菁华

1、有穷数列与无穷数列:

2、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

3、等比数列中,若m+n=p+q,则

4、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、(bn>0)是等比数列,则 (c>0且c 1) 是等差数列。

6、向量的数量积:

7、*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

8、不等式证明的依据

9、不等式的证明方法

10、交集;

11、逻辑连结词;

12、反函数;

13、对数的运算性质;

14、等比数列及其通顶公式;

15、同角三角函数的基本关系式;

16、已知三角函数值求角;

17、斜三角形解法举例。

18、*面向量的坐标表示;

19、不等式的证明;

20、不等式的解法;

21、直线的倾斜角和斜率;

22、直线方程的点斜式和两点式;

23、直线方程:

24、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

25、位置关系的证明(主要方法):注意立体几何证明的书写

26、常见函数的导数公式:①;②;③;

27、导数的应用:

28、四种命题:

29、逻辑联结词:

30、面积、体积最(大)问题

31、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

32、二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

33、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

34、三角形三角关系:A+B+C=180°;C=180°-(A+B);

35、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin

36、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

37、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

38、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:

39、,,成等差数列

40、一元二次不等式解法:


六年级下册数学知识点归纳 40句菁华(扩展8)

——七年级下册数学第二单元知识点整理归纳 30句菁华

1、点到直线的距离:直线外一点到这条直线的垂线段的长度。

2、*行公理:过直线外一点有且只有一条直线与已知直线*行。

3、*行线的判定。

4、∠BED∠DFC∠AFD∠DAF

5、证明:

6、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8

7、*行,证明如下:

8、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

9、两条直线被第三条直线所截:

10、垂线段最短。

11、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

12、*移:①*移前后的两个图形形状大小不变,位置改变。②对应点的线段*行且相等。

13、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

14、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

15、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)

16、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

17、任意一个三角形两角*分线的夹角=90+第三角的一半。

18、钝角三角形有两条高在外部。

19、三条边分别对应相等的两个三角形全等。

20、两条直角边对应相等的两个直角三角形全等。

21、两个能够重合的图形称为全等图形。

22、全等图形的性质:全等图形的形状和大小都相同。

23、全等三角形

24、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。

25、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间

26、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

27、数学公式一定要记熟,并且还要会推导,能举一反三。

28、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。

29、关于三角形的概念及其按角的分类

30、保持好心态


六年级下册数学知识点归纳 40句菁华(扩展9)

——五年级数学知识点 30句菁华

1、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

2、裂项公式(用于特殊的简便计算)

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

4、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

5、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

6、循环小数问题:

7、732732写作10.732。

8、小数除以整数:

9、当被除数与除数同时扩大或缩小相同的倍数时,商不变。

10、当被除数(不为0)除以一个小于它的数时,商大于1。

11、11的倍数特征:一个数奇数位数字之和与偶数位数字之和相减(大数减小

12、大单位到小单位,乘进率。小单位到大单位,除以进率。

13、三角形和*行四边形等底等高,则三角形的面积是*行四边形的一半,*行四边形的面积是三角形的2倍。

14、三角形面积是与它等底等高的*行四边形面积的一半。

15、100以内的质数歌谣

16、表示相等关系的式子叫做等式。

17、方程一定是等式;等式不一定是方程。等式>方程

18、20以内的自然数中(包括20),奇数有()偶数有()

19、5□中最大填()时这个数能被3整除,这个数的约数有()

20、如果a能被b整除,则a和b的最大公约数是(),a和b的最小公倍数是()

21、一根长2米的长方体钢材,沿横截面截成两段后,表面积增加0.6*方分米,这段长方体钢材的体积是()立方分米。

22、一个非0自然数不是质数,就是合数。()

23、一个长方体(不含正方体)最多有8条棱相等。()

24、9×1.4+2×0.16200-(3.05+7.1)×18

25、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次*均每小时行多少千米?

26、求近似数的方法一般有三种:

27、小数四则运算顺序和运算定律跟整数是一样的。

28、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

29、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

30、事件发生的机会(或概率)有大小。


六年级下册数学知识点归纳 40句菁华(扩展10)

——六年级数学下册基础知识练习题 30句菁华

1、一部手机的号码是13a3b85501c ,当a是最小的自然数、b既是奇数又是合数、c既是偶数又是质数时,该手机的号码是( )。

2、18÷( )=0.75 = ( )/

3、如果把A和B分解质因数,A=2×3×5 B=2×3×7 A和B的最大公约数是( ),最小公倍数是( )。

4、林甸地处松嫩*原北部,幅员面积764000000*方米,合( )*方千米。

5、华夏商场出售一种品牌的电视机,上午售出10台,下午售出7台,上午比下午多收货款4560元,每台电视机( )元。

6、两次一共用去( )米。

7、当甲数比乙数多25%时,应把甲数看做单位“1” 。 ( )

8、小明从家到学校用了6分钟,小刚从家到学校用了7分钟,小明的速度一定比小刚快。 ( )

9、比的前项与后项同时乘或除以一个相同的数,比值不变。 ( )

10、把0.8亿改写成用“万”作单位的数是()

11、监利水文站用来测量水位高低和变化情况的选用()统计图。

12、38的分子加上6,要使分数大小不变,那么分母要加上()

13、小圆和大圆的半径分别是2厘米和5厘米,小圆与大圆的面积之比是()

14、把14米长的电线*均分成5段,每段电线的长度是全长的()

15、小于45的分数有35、25、15三个。()

16、若两条直线不相交,则它们就*行。()

17、一个长方形和一个正方形的周长都是16厘米,那么它们的面积也相等。()

18、二百零四亿零六十万零二十写作。

19、把3/7、3/8和4/7从小到大排列起来是。

20、所有的小数都小于整树。

21、120/150不能化成有限小数。

22、1米的4/5与4米的1/5同样长。

23、0表示没有,所以0不是一个数。

24、比3小的整数只有两个。

25、不改变0.7的值,改写成以千分之一为单位的数是。

26、最大的三位数比最小的三位数大

27、甲数的1/2等于乙数的1/3,那么甲数乙数。

28、在下面的□里中填上适当的数字,使第一个数最接近368万,第二个数最接近10亿。

29、一个多位数,省略万位后面的的尾数约是6万,估计这个多位数在省略前最大只能是,最小只能是。

30、3452、4523、

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3