位置 > 首页 > 句子 >

高二数学知识点归纳 40句菁华

日期:2022-12-03 00:00:00

1、有穷数列与无穷数列:

2、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

3、等比数列中,若m+n=p+q,则

4、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、(bn>0)是等比数列,则 (c>0且c 1) 是等差数列。

6、向量的数量积:

7、*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

8、不等式证明的依据

9、不等式的证明方法

10、交集;

11、逻辑连结词;

12、反函数;

13、对数的运算性质;

14、等比数列及其通顶公式;

15、同角三角函数的基本关系式;

16、已知三角函数值求角;

17、斜三角形解法举例。

18、*面向量的坐标表示;

19、不等式的证明;

20、不等式的解法;

21、直线的倾斜角和斜率;

22、直线方程的点斜式和两点式;

23、直线方程:

24、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

25、位置关系的证明(主要方法):注意立体几何证明的书写

26、常见函数的导数公式:①;②;③;

27、导数的应用:

28、四种命题:

29、逻辑联结词:

30、面积、体积最(大)问题

31、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

32、二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

33、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

34、三角形三角关系:A+B+C=180°;C=180°-(A+B);

35、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin

36、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

37、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

38、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:

39、,,成等差数列

40、一元二次不等式解法:


高二数学知识点归纳 40句菁华扩展阅读


高二数学知识点归纳 40句菁华(扩展1)

——数学知识点 100句菁华

1、公式。(每两个相邻的时间单位之间的进率是60)

2、①相同分母的分数相加、减:分母不变,只和分子相加、减。

3、利用等底等高的两个三角形面积相等。

4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

6、有理数乘法法则:

7、乘方的定义:

8、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

9、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

10、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

11、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

12、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

13、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

14、圆方程

15、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

16、被除数÷除数=商

17、被除数=商×除数

18、从个位加起;

19、个位不够减从十位退1,在个位加10再减。

20、末位不管有几个0都不读。

21、角

22、(1)什么是互相垂直?什么是垂线?什么是垂足?

23、加法意义和运算定律

24、什么是被减数?什么是减数?什么叫差?

25、乘法

26、什么是单名数?

27、什么是有限小数?

28、什么是质数(或素数)?

29、什么是分解质因数?

30、怎么比较分数大小?

31、圆的周长总是直径的三倍多一些。

32、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

33、求比一个数多(或少)几分之几的数是多少的解题方法

34、亿以内的数的认识:

35、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

36、学生在动手操作中,可以画出并能计算出图形的周长。

37、已经学过的面积单位有*方厘米(cm2)、*方分米(dm2)、*方米(m2)、公顷、*方千米(km2)。

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、推论 三角形两边的差小于第三边

41、推论2 三角形的一个外角等于和它不相邻的两个内角的和

42、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

43、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

44、直角三角形斜边上的中线等于斜边上的一半

45、矩形判定定理2 对角线相等的*行四边形是矩形

46、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线*分一组对角

47、菱形判定定理2 对角线互相垂直的*行四边形是菱形

48、正方形性质定理1 正方形的四个角都是直角,四条边都相等

49、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

50、等腰梯形的两条对角线相等

51、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

52、不含任何元素的集合叫做空集,记为

53、一个加数=和+另一个加数

54、商中间或末尾有0的除法:

55、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

56、代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)

57、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

58、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

59、比值通常用分数、小数和整数表示。

60、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

61、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

62、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

63、当1和任何字母相乘时,“ 1” 省略不写.

64、检验,写答语

65、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

66、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

67、无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

68、知识点概述

69、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

70、数学名词。一组具有某种共同性质的数学元素:有理数的~。

71、判断函数奇偶性忽略定义域致误

72、函数零点定理使用不当致误

73、忽视三视图中的实、虚线致误

74、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

75、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

76、2空间几何体的三视图和直观图

77、判断两*面*行的方法有三种:

78、3.1直线与*面垂直的判定

79、一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.

80、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

81、被开方数一定是非负数.

82、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

83、整式与分式

84、一元二次方程的二次函数的关系

85、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

86、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

87、*行四边形判定定理4

88、矩形性质定理2

89、菱形判定定理1

90、正方形性质定理1

91、等腰梯形判定定理

92、性质定理1

93、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

94、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

95、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

96、切线长定理

97、圆的外切四边形的两组对边的和相等

98、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

99、扇形面积公式:S扇形=n兀R^2/360=LR/2

100、列方程解应用题的常用公式:


高二数学知识点归纳 40句菁华(扩展2)

——数学知识点 50句菁华

1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

2、利用等底等高的两个三角形面积相等。

3、利用特殊规律

4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

5、大于0的数叫做正数。

6、在正数前面加上负号“-”的数叫做负数。

7、整数和分数统称为有理数。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、一个加数=和—另一个加数

10、被减数=减数+差

11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

13、进行检验,写出答案。

14、加法意义和运算定律

15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

17、求一个数的几分之几是多少?(用乘法)

18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

19、同角或等角的补角相等

20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半

21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

22、乘法分配律:a × b + a × c = a ×(b + c)

23、知道除法算式中各部分的名称:被除数、除数、商。

24、被除数末尾0前面能被除尽,0应写在4的下方。

25、除法的应用p44

26、单价、数量、总价p45、46

27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

31、比的后项不能为0。

32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

33、解比例式

34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)

35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

36、数的分类及概念数系表:

37、绝对值:①定义(两种):

38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

39、求函数的最值与值域的区别和联系

40、定义

41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。

42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

43、调查方式:

44、韦达定理

45、三角形内角和定理:

46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

48、相似三角形判定定理1

49、正n边形的每个内角都等于(n-2)×180°/n

50、弧长计算公式:L=n兀R/180——》L=nR


高二数学知识点归纳 40句菁华(扩展3)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


高二数学知识点归纳 40句菁华(扩展4)

——初二地理知识点归纳总结 40句菁华

1、世界上最大的黄土堆积区是黄土高原,黄土高原是世界上水土流失最为严重的地区之一。

2、水土流失带走了地表肥沃的土壤,使农作物产量下降;使沟谷增多、扩大、加深,从而导致耕地面积减少;还向黄河下游输送大量泥沙,给河道整治和防洪造成巨大困难。

3、长江沿江地带是一个较为典型的“带状”区域,不仅地理位置优越,而且自然条件得天独厚,为本区的发展奠定了坚实的基础,本区是全国经济发展的重心地区。

4、我国人口超过500万的少数民族有彝族、蒙古族、藏族。我国人口的特点:人口基数大,增长速度快

5、我国把实行计划生育作为我国的一项基本国策,内容:控制人口数量,提高人口素质,要求:少生、优生、晚婚、晚育。

6、我国是一个多民族的大家庭,有56个民族,汉族人口最多,,其余55个民族,称少数民族。少数民族中人口最多的是壮族,人口最少的是珞巴族。少数民族中人口超过500万的有9个,(记忆口诀:西北蒙、回、维,东北满族乡,西南苗、彝、壮,土家、藏族广)。

7、个民族分布具有“大杂居,小聚居”的特点,“大杂居”有利于民族的交流,促进各民族经济的共同繁荣;“小聚居”有利于保护少数民族的风俗习惯的文化传统。

8、长江三峡(自西向东)。

9、(土地、森林、水和水能等)

10、土地资源分为耕地、林地、草地和建设用地等。耕地、林地、草地为农业用地。建设用地为非农业用地。各类土地所占比例不尽合理,主要是耕地、林地少,难利用土地多,后备土地资源不足,人与耕地的矛盾突出。(总量丰富,人均不足)。

11、交通运输对地区的经济发展起着及其重要的作用,交通运输又比喻为经济发展的“先行官”。

12、是国民经济的主导,是国家财政收入的化的根本保证。

13、我国的地理位置:

14、国土辽阔:陆地领土面积960万*方千米,仅次于俄罗斯和加拿大,居世界第三位。

15、从东西半球看,*位于东半球,从南北半球看,*位于北半球。

16、从大洲大洋位置看,*位于亚洲东部太*洋的西岸。

17、从纬度位置看,*大部分位于属于中纬度地区,属于北温带,南部少部分位于热带,没有寒带。

18、我国濒临的海洋从北到南依次是渤海,黄海、东海、南海。

19、各民放分布具有大散居,小聚居,交错杂居的特点。

20、我国在各少数民族聚居的地区实行民族区域自治,设立自治机关,建立自治区、自治州、自治县、民族乡等。

21、四大高原是黄土高原、内蒙古高原、青藏高原、云贵高原,

22、黄土高原的特征质地疏松,缺乏植被覆盖的地方水土流失严重,沟壑纵横,内蒙古高原的特征地面*坦,一望无垠,青藏高原的'特征冰川广布,云贵高原的特征地面崎岖不*。

23、开以利用山区的时候,要特别注意生态环境建设。

24、冬季,我国南北气温差别很大,夏季,除青藏高原外全国普遍高温。

25、1月0℃等温线大致沿秦岭——淮河一线分布。

26、划分温度带主要指标是活动积温。

27、季风区和非季风区的分界线是大兴安岭、阴山、贺兰山、巴颜喀拉山、冈底斯山

28、世界上最长,开凿最早的人工河是京杭大运河。

29、黄河下游河床逐渐抬高,成为"地上河"

30、长江水能资源主要集中在上游河段。宜宾城市以下四季都能通航。

31、我国自然资源的特点是总量丰富,人均不足。

32、在自然环境差异的基础上,人类活动也呈现明显的差异。

33、动物在自然界中作用:动物在生态系统

34、食物链和食物网中的各种生物之间存在着相互依赖、相互制约的关系。任一环节出了问题,就会影响整个生态系统,所以不能随意灭杀某种动物。

35、生物反应器:利用生物做“生产车间”,生产人类所需的某些物质。如“乳房生物反应器,即人类通过对某种动物的遗传基因进行改造,使这些动物的乳房可以产生分泌出人们需要的某种物质”。可节省建厂房和买设备的费用,减少复杂的生产程序和环境污染。

36、我们常用“白山黑水”“林海雪原”“北大仓”来形容东北三省。

37、东北三省地形以山地和*原为主。东部为长白山地,鸭绿江和图们江是中朝两国的界河。北部为小兴安岭,西倚大兴安岭。北部黑龙江是中俄两国的界河。中间位东北*原。

38、东北三省纬度较高,农作物一年一熟。在春秋季节,经常受寒潮影响,易发低温冻害。

39、东北三省是新*成立后建成的第一个重工业基地,是“新*工业的摇篮”。

40、东北三省形成了以钢铁、机械、石油、化学工业为主导,包括煤炭、电力、建材、森林等工业部门的比较完整的重工业体系。


高二数学知识点归纳 40句菁华(扩展5)

——小学四年级上册数学知识点总结 40句菁华

1、位数:一个数含有几个数位,就是几位数,如652100是个六位数。

2、按照我国的计数习惯,从右边起,每四个数位是一级。

3、比较数的大小:

4、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

5、ON╱CE:开关及清除屏键,清除显示屏上的内容。

6、国土面积(*、省、市、区等)、海洋面积等特别大的面积适合用*方千米。如

7、长方形面积=长×宽

8、角的大小与角两边的长短没关系。角的大小与*的大小有关系,*得越大,角越大。

9、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。

10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°

11、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。

12、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。

13、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b

14、长方形是特殊的*行四边形,正方形是特殊的*行四边形。正方形是特殊的长方形。

15、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。

16、商的变化规律:

17、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案.

18、做作业的习惯

19、条形统计图的特点:

20、我们学过的统计图有横向条形统计图、纵向条形统计图以及单式统计图和复试统计图。

21、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

22、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

23、差=被减数-减数

24、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。

25、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。

26、验算:没有余数的除法,用商除数,看看是否等于被除数;

27、步骤:、弄清题意,明确已知条件和所求问题;、分析数量关系,确定先算什么,再算什么;

28、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。

29、一定、可能、不可能可以用来描述事件发生的可能性。

30、有些事件发生的可能性是有大小。,数量多,可能性就大;数量少,可能性就小。

31、在一个*面内,不相交的两条直线互相*行,其中一条直线是另一条直线的*行线。

32、多位数的大小比较:

33、“万”“亿”作单位的数:

34、计算工具的认识:算盘,计算器

35、角的大小与角的两边画出的长短没关系。角的大小要看两条边*的'大小,*得越大,角越大。

36、75度=45度+30度

37、一个*行四边形在拉动过程中,面积变化,高变化,周长不变。*行四边形具有易变性。

38、只有一组对边*行的四边形叫梯形。

39、画高:

40、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。


高二数学知识点归纳 40句菁华(扩展6)

——数学圆知识点总结 40句菁华

1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

2、定理:一条弧所对的圆周角等于它所对的圆心角的一半

3、①直线L和⊙O相交d﹤r

4、推论:经过切点且垂直于切线的直线必经过圆心

5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

6、圆的外切四边形的两组对边的和相等

7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

8、①两圆外离d﹥R+r

9、正三角形面积√3a2/4a表示边长

10、弧长计算公式:L=n兀R/180

11、圆心决定圆的位置,半径决定圆的大小。

12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

14、两个数相除,又叫做这两个数的比。比的后项不能为0.

15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、定理相交两圆的连心线垂直*分两圆的公共弦

20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

22、内公切线长= d-R-r外公切线长= d-R+r

23、定理一条弧所对的圆周角等于它所对的圆心角的一半

24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

26、一条弧所对的圆周角等于它所对的圆心角的一半。

27、圆的面积S=πr

28、圆锥侧面积S=rl

29、圆的标准方程

30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。

32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

33、圆的周长C=2πr=πd

34、圆锥侧面积S=πrl

35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧

36、①直线L和⊙O相交 d

37、切线的性质定理 圆的切线垂直于经过切点的半径

38、正n边形的每个内角都等于(n-2)×180°/n

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


高二数学知识点归纳 40句菁华(扩展7)

——高中历史必考知识点归纳 40句菁华

1、儒学教育状况:

2、内容:

3、实质:实际上是在国家掌握主要经济命脉的前提下,允许私人经济等多种经济成分的存在,允许商品经济的发展。

4、评价:*模式开辟了一种不同于市场经济的计划经济体制和新型的工业化模式,是苏联在进行社会主义建设中的探索和创新。在初期和战争时期曾发挥过积极作用,但是,它不是社会主义的惟一模式,不仅不适用于其他社会主义国家,对二战后苏联的发展也是不利的。

5、同姓分封,范围扩大

6、义务更加明确

7、等级爵位产生

8、公元前509年罗马废除了“王政”,改行共和,开始了近500年共和国时期。

9、隋唐时期:水稻种植普遍采用育秧移栽等技术;曲辕犁,*耕犁已相当完善。

10、宋元时期:精耕细作技术进入全面成熟时期;耧锄;水旱轮作的稻麦复种制,标志着我国精耕细作水*上升到一个新的高度;农作物品种交流非常广泛;南宋时江浙地区成为全国经济重心,东北、西北地区得到发展。

11、*是天文学发展最早的国家之一。

12、西汉编定的《黄帝内经》是中医学的奠基之作。

13、东汉末年,张仲景的中医专著《伤寒杂病论》。创造性地提出辩证施治的方法,奠定了后世中医临床学的理论基础,被后世医家誉为“万世宝典”。

14、李时珍,写成药物学巨著《本草纲目》,对中药学的发展做出了杰出贡献。是对16世纪以前中医药学的系统总结。被誉为“东方药物巨典”。

15、冶铜技术

16、*是世界上最早养蚕织绸的国家

17、明清时期,丝织业的发展进入鼎盛时期,苏州、杭州是最著名的丝织业中心。

18、城邦的定义:前8~前6世纪,一种国家形态

19、城邦殖民

20、正确评价春秋战国期间的兼并战争。

21、商鞅变法的背景,内容,作用和实质(是在经济,政治上确立了封建制度。是怎样体现和完成春秋战国以来的历史发展趋势)。

22、秦始皇建立和巩固统一和中央集权的措施。

23、从正反面分析秦亡汉兴的原因。

24、自春秋、战国经秦到西汉治国思想的变动和影响。

25、春秋战国时期,铁器牛耕使用和推广,井田向私田过渡,齐国的“相地而衰征”,鲁国的初税亩推动土地私有化;战国时期的变法,尤其是商鞅变法彻底废除了奴隶制生产关系,建立了封建社会的生产关系。

26、公元前7世纪,最早的哲学诞生

27、内容:马丁·路德《九十五条论纲》阐述了因信称义,使人们获得精神上的自由和灵魂得救的自*,带有鲜明的人文主义色彩,这是宗教改革开始。

28、孟德斯鸠《论法的精神》:三权分立成为资产阶级政治制度的基本原则;

29、儒学兴起的原因:

  汉武帝起用很多儒学家参与国家大政。儒家学说成为*选拔人才、任官授爵的标准。士人纷纷研习儒家经典,儒学得以大兴。

30、内容:实行余粮收集制;全面推行工业国有化;取消自由贸易,实行配给制;实行普遍劳动义务制等

  余粮收集制的弊端和效果:严重地损害了农民的利益,但它在短期内取得明显效果,缓解了城市的饥荒,保证对前线红军的粮食供应。

31、功绩:(1)国家工业化迅速实现;(2)为反*战争的胜利奠定了物质基础;

  (3)国民文化素质得到了提高;

32、同姓分封,范围扩大

  对照《西周分封示意图》,不难看出同姓的诸侯在燕、鲁等地大有其人,打破了商朝同姓多内服的成例,使周王亲族的势力远达边鄙,扩大了周王的有效管辖范围。

33、逐级分封

  诸侯在自己的封国内,要以大宗的名分继续对自己的宗亲进行分封,这就使周王的势力随着血缘关系的.逐级延展,渗透到诸侯国的每一个地区;商代未见如此严密的制度,商王对外服地域的控制力是很有限的。

34、公元476年西罗马帝国灭亡,标志着欧洲古代历史终结。

  古代*的科技成就

35、冶铜技术

  新石器时代:出现小件青铜器→夏:铸造比较讲究→商周:繁荣(如司母戊鼎)→春秋至秦汉: 广泛采用鎏金、镶嵌工艺

36、迈锡尼文明:王宫、卫城、王室陵墓、线形文字B、尚武好战

  (二)黑暗时代:

37、公元前5世纪:

  背景:民主政治发达,商业发展,思想活跃。

  智者学派:提倡怀疑精神,反对迷信,强调人的价值、人的决定作用。构成古希腊人文精神的基本内涵。

  代表人物:普罗塔哥拉。强调人的主题意义,否认神或命运,树立了人的尊严;但过分强调个人主观感受,忽视人们认识的共同性。

38、影响:

  ①打破中世纪神学的束缚,*人的思想;

  ②适应资本主义的需要;

  ③为启蒙运动奠定了思想基础;

  ④反封建教会,促成宗教改革出现;

  ⑤为近代自然科学的产生和发展清除思想阻碍。

  三、宗教改革

39、天文学

  (1)波兰天文学家、数学家*“近代天文学奠基人”:提出太阳中心说,根本上动摇了神学的理论基础。

  (2)意大利物理学家和天文学家伽利略“近代科学之父”:1610年发现了木星的四颗卫星,为日心说找到了确凿的证据。他开创了以实验事实为根据并具有严密逻辑体系的近代科学标志着物理学的真正开端,为牛顿经典力学的创立奠定了基础。

40、“电气时代”

  ①背景:1831年英国法拉第发现 “电磁感应”现象。为发电机的研制奠定了理论基础。

  ②电力能源的开发:1867年,德意志西门子发明发电机。不久,比利时格拉姆 发明电动机。

  ③“发明大王”美国爱迪生创造发明达1000多项。电气方面的发明有电灯、电话、电报、电影等。其中最有影响的是电灯的发明。

  ④电气技术发展的作用:以发电机为标志的电气技术,提供了更为强大便捷而又廉价的动力,极大的推动了工业生产的发展,掀起了第二次工业革命。将人类推进电气时代。


高二数学知识点归纳 40句菁华(扩展8)

——七年级上册数学知识点 30句菁华

1、2 有理数

2、3 有理数的加减法

3、同号两数相加,取相同的符号,并把绝对值相加。

4、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

5、整数和分数统称为有理数(rational number)。

6、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

9、两个负数,绝对值大的反而小。

10、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

11、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

12、有理数中仍然有:乘积是1的两个数互为倒数。

13、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

14、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

15、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

16、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

17、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

18、把等式一边的某项变号后移到另一边,叫做移项。

19、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。

20、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net)。

21、角∠(angle)也是一种基本的几何图形。

22、几何图形的投影问题

23、线段、射线、直线的表示方法

24、只有符号不同的两个数叫做互为相反数。(0的相反数是0)

25、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。

26、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

27、不含字母的项叫做常数项。

28、单项式和多项式统称为整式。

29、只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

30、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。


高二数学知识点归纳 40句菁华(扩展9)

——五年级数学知识点 30句菁华

1、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

2、裂项公式(用于特殊的简便计算)

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

4、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

5、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

6、循环小数问题:

7、732732写作10.732。

8、小数除以整数:

9、当被除数与除数同时扩大或缩小相同的倍数时,商不变。

10、当被除数(不为0)除以一个小于它的数时,商大于1。

11、11的倍数特征:一个数奇数位数字之和与偶数位数字之和相减(大数减小

12、大单位到小单位,乘进率。小单位到大单位,除以进率。

13、三角形和*行四边形等底等高,则三角形的面积是*行四边形的一半,*行四边形的面积是三角形的2倍。

14、三角形面积是与它等底等高的*行四边形面积的一半。

15、100以内的质数歌谣

16、表示相等关系的式子叫做等式。

17、方程一定是等式;等式不一定是方程。等式>方程

18、20以内的自然数中(包括20),奇数有()偶数有()

19、5□中最大填()时这个数能被3整除,这个数的约数有()

20、如果a能被b整除,则a和b的最大公约数是(),a和b的最小公倍数是()

21、一根长2米的长方体钢材,沿横截面截成两段后,表面积增加0.6*方分米,这段长方体钢材的体积是()立方分米。

22、一个非0自然数不是质数,就是合数。()

23、一个长方体(不含正方体)最多有8条棱相等。()

24、9×1.4+2×0.16200-(3.05+7.1)×18

25、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次*均每小时行多少千米?

26、求近似数的方法一般有三种:

27、小数四则运算顺序和运算定律跟整数是一样的。

28、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

29、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

30、事件发生的机会(或概率)有大小。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3