位置 > 首页 > 句子 >

初一数学上册知识点总结 50句菁华

日期:2022-12-02 00:00:00

1、课后及时复习,温故而知新

2、正方体的*面展开图:

3、数轴:

4、有理数的运算:

5、添括号法则

6、直线的性质

7、圆:

8、等式的性质

9、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

10、角∠(angle)也是一种基本的几何图形.

11、等角的补角相等,等角的余角相等.

12、方程:含有未知数的等式就叫做方程.

13、解:解出所列方程.

14、有理数的概念

15、不等式解集的表示方法:

16、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

17、一元一次不等式与一次函数的综合运用:

18、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

19、解一元一次不等式组的步骤:

20、过一点有且只有一条直线和已知直线垂直

21、直线外一点与直线上各点连接的所有线段中,垂线段最短

22、两直线*行,内错角相等

23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24、在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

25、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

26、定义:*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。水*的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为*面直角坐标系的原点。

27、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

28、几何图形的组成

29、点动成线,线动成面,面动成体。

30、①直线公理:过两点有且只有一条直线.

31、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

32、培养学生获取信息,分析问题,处理问题的能力。

33、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

34、大于0的数是正数。

35、规定了原点,单位长度,正方向的直线称为数轴。

36、数的大小比较:

37、若a+b=0,则a,b互为相反数

38、乘除:同号得正,异号的负

39、相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

40、实数大小的比较:利用法则比较大小;利用数轴比较大小。

41、相遇问题:速度和×相遇时间=路程和

42、追赶问题:速度差×追赶时间=追赶距离

43、商品销售问题

44、储蓄问题

45、多项式:;

46、把多项式中的同类项合并成一项,叫做合并同类项;

47、方程的概念:

48、去分母

49、列方程解应用题的一般步骤:

50、任何数同零相乘都得零;


初一数学上册知识点总结 50句菁华扩展阅读


初一数学上册知识点总结 50句菁华(扩展1)

——六年级数学上册知识点 60句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、两个小数的比,向右移动小数点的位置。也是先化成整数比。

3、3 32

4、条形统计图:可以清楚的看出数据的多少

5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

6、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

8、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

9、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

10、被除数÷除数= 被除数/除数

11、因为零不能作除数,所以分数的分母不能为零。

12、乘法分配律:

13、整数减法计算法则:

14、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

15、混合运算用梯等式计算,等号写在第一个数字的左下角。

16、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

17、找单位“1”的方法

18、1的倒数是1,0没有倒数。

19、被除数与商的大小关系

20、20是25的几分之几? 20÷25=4/5

21、已知单位“1”用乘法,求单位“1”用除法;

22、工程问题

23、一个数乘分数的意义就是求一个数的几分之几是多少。

24、求一个数的几分之几是多少?(用乘法)

25、什么是速度?

26、求一个数的百分之几是多少。一个数(单位“1”)×百分率

27、已知一个数的百分之几是多少,求这个数。

28、常用统计图的优点:

29、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

30、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

31、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

32、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

33、百分数应用:

34、圆的定义:

35、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

36、半径为1厘米的圆的周长是3.14厘米。(__)

37、这个月哪项出最多?支出了多少元?

38、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

39、常见的百分率的计算方法:

40、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

41、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

42、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)

43、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

44、除数是整数的小数除法计算法则:

45、圆锥体

46、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

47、化简比:化简之后结果还是一个比,不是一个数。

48、比和除法、分数的区别:

49、已知单位“1”的量用乘法。

50、画线段图:

51、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

52、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

53、比和比例的意义:

54、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

55、“数与形相结合”的思想

56、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

57、圆的半径越长,这个圆就越大。(__)

58、画一个半径为1厘米的圆。

59、直角梯形的高与上底都是(__),下底是(__),面积是(__)。

60、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?


初一数学上册知识点总结 50句菁华(扩展2)

——六年级数学上册知识点 50句菁华

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、用比的前项和后项同时除以它们的最大公约数。

3、用表格方式解决有局限性,数目必须小,例:

4、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

5、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

6、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

7、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

8、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

9、如果两个数是互质数,它们的公因数就是1。

10、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

11、减法的性质:

12、整数减法计算法则:

13、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

14、圆的面积=圆周率×半径×半径

15、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

16、成轴对称图形的特征和性质:

17、物体旋转时应抓住三点:

18、分数乘整数的计算方法

19、已知A比B多(或少)几分之几,求A的解题方法

20、1的倒数是1,0没有倒数。

21、分数四则混合运算的运算顺序

22、工程问题

23、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

24、一个数乘分数的意义就是求一个数的几分之几是多少。

25、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;

26、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;

27、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

28、百分数的意义:

29、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

30、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

31、一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是(__)。

32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)

33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

34、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

35、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、小数乘法意义:

38、、长方形

39、化简比:化简之后结果还是一个比,不是一个数。

40、比和除法、分数的区别:

41、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

42、圆面积公式的推导

43、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

44、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

45、圆和点的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO

46、在同一个圆中最长的一条线段是(__)。

47、两个圆的大小一样,它们的半径一定相等。(__)

48、*行四边形、长方形、正方形、圆形都是*面图形中的直线图形。(__)

49、经过圆心的线段一定是直径。(__)

50、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)


初一数学上册知识点总结 50句菁华(扩展3)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


初一数学上册知识点总结 50句菁华(扩展4)

——五年级上册数学知识点 60句菁华

1、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

2、理解用字母表示数的意义和作用;

3、理解简易方程的意思及其解法;

4、在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、计算小数乘法末尾对齐,按整数乘法法则进行计算。

7、把因数的位置交换相乘

8、三角形面积=底×高÷2字母公式:s=ah÷2

9、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2

10、重叠法;

11、公式计算面积法;

12、正方形周长=边长×4 C = 4 a

13、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

14、1*方米=100*方分米=10000*方厘米

15、①分子相同,分母小的分数反而大,分母大的分数反而小。

16、因数末尾有几个0,就在积的末尾添上几个0。

17、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

18、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

19、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

20、长方形的面积=长×宽:S=ab。

21、长方形的周长=(长+宽)×2 C=(a+b)×2

22、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

23、直径=半径×2 d=2r半径=直径÷2 r= d÷2

24、长方体的体积=长×宽×高公式:V = abh

25、长方体(或正方体)的体积=底面积×高公式:V = abh

26、三角形面积公式推导:旋转 *行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个*行四边形, 长方形的长相当于*行四边形的底; *行四边形的底相当于三角形的底; 长方形的宽相当于*行四边形的高; *行四边形的高相当于三角形的高; 长方形的面积等于*行四边形的面积, *行四边形的面积等于三角形面积的2倍,因为长方形面积=长宽,所以*行四边形面积=底高。 因为*行四边形面积=底高,所以三角形面积=底高2

27、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

28、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

29、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

30、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

31、所有的方程都是等式,但等式不一定都是方程。

32、三角形面积公式推导:旋转

33、等底等高的*行四边形面积相等;

34、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水*更合适。

35、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

36、封闭图形一周的长度,就是它的周长。

37、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

38、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=223

39、如何比较分数的大小: 分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。

40、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

41、只有1个因数。“1”既不是质数,也不是合数。

42、表示相等关系的式子叫做等式。

43、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

44、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

45、1992所有的质因数的和是( 88 )。

46、几个数的( 最大公因 )数的所有( 因 )数,都是这几个数的公因数;几个数的( 最小公倍 )数的所有( 倍 )数,都是这几个数的公倍数。

47、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?

48、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?

49、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

50、<<1,□里可以填的自然数有( )。[写出所有可能]

51、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

52、在实际应用中,小数除法所

53、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

54、圆是由一条曲线围成的*面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的*面图形)

55、长方形里最大的圆。两者联系:宽=直径

56、同一个圆内的所有线段中,圆的直径是最长的。

57、142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84

58、1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5

59、圆的面积公式:S圆=r2。圆的面积是半径*方的倍。

60、半圆的面积是圆面积的一半。S半圆=r22


初一数学上册知识点总结 50句菁华(扩展5)

——六年级上册数学知识点 50句菁华

1、异分母分数加减法计算方法:

2、小数除法法则:

3、连结梯形对角线中点的线段等于两底的一半。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

5、分数乘整数的意义

6、分数乘分数的的计算方法

7、找单位“1”的方法

8、求一个数的几倍、几分之几是多少,用乘法计算。

9、20是25的几分之几? 20÷25=4/5

10、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

11、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

12、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

13、甲圆直径长8厘米,是乙圆直径的40%。乙圆的周长是(__)。

14、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

15、周长相等的*面图形中,圆的面积最大;面积相等的*面图形中,圆的周长最短。

16、加法交换律:a+b=b+a

17、直接求一个数是另一个数的百分之几一个数÷另一个数

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

20、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

21、路程一定,速度比和时间比成反比。

22、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

23、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

24、分数单位:把单位“1”*均分成若干份,表示这样的一份的数叫做分数单位。

25、分数应用题基本数量关系(把分数看成比)

26、被除数÷除数=被除数×除数的倒数。

27、自然数和0都是整数。

28、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

29、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

30、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

31、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

32、小数点位置的移动引起小数大小的变化

33、被除数 相当于分子,除数相当于分母。

34、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

35、、长方体

36、圆形

37、圆柱体

38、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

39、分数除法应用题:

40、根据比的基本性质,可以把比化成最简单的整数比。

41、用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

42、理解并掌握分数除法的计算方法,会进行分数除法计算;

43、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;

44、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

45、百分数的意义,求一个数是另一个数的百分之几的应用题;

46、小数的倒数:

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、比和比例的意义:

49、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

50、内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。


初一数学上册知识点总结 50句菁华(扩展6)

——数学知识点 50句菁华

1、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

2、利用等底等高的两个三角形面积相等。

3、利用特殊规律

4、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

5、大于0的数叫做正数。

6、在正数前面加上负号“-”的数叫做负数。

7、整数和分数统称为有理数。

8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

9、一个加数=和—另一个加数

10、被减数=减数+差

11、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

13、进行检验,写出答案。

14、加法意义和运算定律

15、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

16、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

17、求一个数的几分之几是多少?(用乘法)

18、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

19、同角或等角的补角相等

20、三角形中位线定理 三角形的中位线*行于第三边,并且等于它的一半

21、定理 *行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

22、乘法分配律:a × b + a × c = a ×(b + c)

23、知道除法算式中各部分的名称:被除数、除数、商。

24、被除数末尾0前面能被除尽,0应写在4的下方。

25、除法的应用p44

26、单价、数量、总价p45、46

27、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

28、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

29、概念:两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题;

30、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

31、比的后项不能为0。

32、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

33、解比例式

34、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)

35、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

36、数的分类及概念数系表:

37、绝对值:①定义(两种):

38、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

39、求函数的最值与值域的区别和联系

40、定义

41、判定定理:一条直线与一个*面内的两条相交直线都垂直,则该直线与此*面垂直。

42、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

43、调查方式:

44、韦达定理

45、三角形内角和定理:

46、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

47、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

48、相似三角形判定定理1

49、正n边形的每个内角都等于(n-2)×180°/n

50、弧长计算公式:L=n兀R/180——》L=nR


初一数学上册知识点总结 50句菁华(扩展7)

——高中数学知识点总结 50句菁华

1、在的导数。

2、建立适当的坐标系,设出动点M的坐标;

3、充要条件。

4、函数的单调性;

5、等差数列前n项和公式;

6、弧度制;

7、正弦函数、余弦函数的图象和性质;

8、函数的奇偶性;

9、已知三角函数值求角;

10、线段的定比分点;

11、不等式的基本性质;

12、含绝对值的不等式。

13、直线方程的点斜式和两点式;

14、两条直线的交角;

15、由已知条件列出曲线方程;

16、双曲线的简单几何性质;

17、抛物线的简单几何性质。

18、直线和*面垂直的判定与性质;

19、两个*面的位置关系;

20、两个*面垂直的判定和性质;

21、棱柱;

22、排列;

23、组合数的两个性质;

24、随机事件的概率;

25、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

26、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

27、函数的三要素是什么?如何比较两个函数是否相同?

28、空间点、直线、*面之间的位置关系:

29、异面直线:

30、解决不等式的有关问题:

31、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫

32、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

33、不在同一直线上的3个点确定一个圆。

34、扇形弧长l=nπr/180

35、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

36、等差数列的前n项和公式:Sn=

37、等差数列{an}中,若m+n=p+q,则

38、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

39、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.

40、集合的表示:(1){?}如{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4

41、“包含”关系—子集注意:A?B有两种可能

42、不含任何元素的集合叫做空集,记为Φ

43、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}。

44、常用的函数表示法:解析法:图象法:列表法:

45、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。

46、棱锥S—h—高V=Sh/3。

47、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

48、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。

49、函数的三要素:定义域、值域、对应关系.这是判断两个函数是否为同一函数的依据.

50、等比数列性质


初一数学上册知识点总结 50句菁华(扩展8)

——初中数学重要知识点总结 40句菁华

1、求不等式的解集的过程,叫做解不等式。

2、用数轴表示不等式的方法。

3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

5、一元一次不等式组的解法

6、不等式与不等式组

7、列一元一次方程解应用题:

8、混合运算法则:先乘方,后乘除,最后加减。

9、代数式

10、解一元二次方程的步骤:

11、角

12、同角或等角的余角相等——余角=90-角度。

13、过一点有且只有一条直线和已知直线垂直

14、直线外一点与直线上各点连接的所有线段中,垂线段最短

15、同位角相等,两直线*行

16、同旁内角互补,两直线*行

17、推论

18、三角形内角和定理:

19、推论1

20、直角三角形斜边上的中线等于斜边上的一半

21、矩形性质定理1

22、菱形性质定理2

23、三角形中位线定理

24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

26、性质定理1

27、性质定理2

28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

31、切线的性质定理

32、①两圆外离

33、弧长计算公式:L=n兀R/180——》L=nR

34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

35、切线的性质定理圆的切线垂直于经过切点的半径

36、推论1经过圆心且垂直于切线的直线必经过切点

37、定理相交两圆的连心线垂直*分两圆的公共弦

38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正三角形面积√3a/4a表示边长

40、弧长计算公式:L=n兀R/180


初一数学上册知识点总结 50句菁华(扩展9)

——必修一知识点总结 40句菁华

1、生物界与非生物界的统一性和差异性

2、研究细胞膜的常用材料:人或哺乳动物成熟红细胞

3、细胞膜主要成分:脂质和蛋白质,还有少量糖类

4、细胞膜功能:

5、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→

6、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质

7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同。

8、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(-COOH)与另一个氨基酸分子的氨基(-NH2)相连接,同时脱去一分子水,如图:

9、糖类:

10、水存在形式运送营养物质及代谢废物

11、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时

12、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA

13、叶绿素a

14、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。

15、空气中CO2浓度,土壤中水分多少,光照长短与强弱,光的成分及温度高低等,都是影响光合作用强度的外界因素:可通过适当延长光照,增加CO2浓度等提高产量。

16、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。

17、清朝发展

18、“海禁”的表现

19、摩尔(mol):把含有6、02×1023个粒子的任何粒子集体计量为1摩尔。

20、物质的量=气体的体积/气体摩尔体积n=V/Vm

21、离子反应

22、氧化还原反应中概念及其相互关系如下:

23、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

24、指数函数的图象和性质

25、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

26、函数零点的求法:

27、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

28、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

29、物镜:(有)螺纹,镜筒越(长),放大倍数越大。

30、放大倍数=物镜的放大倍数х目镜的放大倍数

31、一行细胞的数目变化可根据视野范围与放大倍数成反比

32、圆行视野范围细胞的数量的变化可根据视野范围与放大倍数的*方成反比计算

33、创立者:(施莱登,施旺)

34、生物体生命活动的物质基础是:组成生物体的各种化学元素和化合物。

35、组成生物体的化学元素的种类大体相同,但含量相差很大。

36、生物界与非生物界具有统一性:组成细胞的元素在无机自然界都可以找到,没有一种是细胞所特有的。

37、不能通过转氨基作用合成必需氨基酸的原因:细胞中缺少合成这些必需氨基酸的中间产物。

38、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

39、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.


初一数学上册知识点总结 50句菁华(扩展10)

——高考数学知识点总结 40句菁华

1、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

2、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

3、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

4、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

5、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

6、.数量积与两个实数乘积的区别:

7、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

8、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

9、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

10、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

11、两条异面直线所成的角的范围:0°<α≤90°< p="">

12、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

13、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

14、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

15、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。

16、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

17、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

18、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

19、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

20、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。

21、注意放回抽样,不放回抽样;

22、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

23、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

24、如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

25、列举法:{a,b,c……}

26、“包含”关系—子集

27、“相等”关系:A=B (5≥5,且5≤5,则5=5)

28、不含任何元素的集合叫做空集,记为

29、方程k=f(x)有解 k∈D(D为f(x)的值域);

30、a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

31、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

32、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

33、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

34、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

35、主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

36、集合元素具有

37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

38、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

39、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

40、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3