位置 > 首页 > 句子 >

数学分析知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

2、三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

3、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

4、韦达定理

5、一元二次方程根的情况

6、两点之间线段最短

7、同旁内角互补,两直线*行

8、三角形内角和定理:

9、推论3

10、全等三角形的对应边、对应角相等

11、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

12、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

13、圆是定点的距离等于定长的点的集合

14、代数式

15、整式与分式

16、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

17、如果两条直线都和第三条直线*行,这两条直线也互相*行

18、边边边公理(SSS):有三边对应相等的两个三角形全等

19、定理1

20、等腰三角形的判定定理

21、勾股定理的逆定理

22、*行四边形性质定理1

23、*行四边形性质定理2

24、*行四边形判定定理4

25、矩形性质定理2

26、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

27、梯形中位线定理

28、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

29、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

30、性质定理2

31、同圆或等圆的半径相等

32、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

33、到已知角的两边距离相等的点的轨迹,是这个角的*分线

34、①直线L和⊙O相交

35、切线长定理

36、弦切角定理

37、弧长计算公式:L=n兀R/180——》L=nR

38、集合表示方法①列举法;②描述法;③韦恩图;④数轴法

39、元素的互异性;

40、集合的表示:{…}如{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}


数学分析知识点总结 40句菁华扩展阅读


数学分析知识点总结 40句菁华(扩展1)

——数学知识点总结 40句菁华

1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

3、2.1直线与*面*行的判定

4、2.2*面与*面*行的判定

5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。

6、2.3—2.2.4直线与*面、*面与*面*行的性质

7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。

8、定理:垂直于同一个*面的两条直线*行。

9、Venn图:

10、“相等”关系:A=B(5≥5,且5≤5,则5=5)

11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

12、圆的外部可以看作是圆心的距离大于半径的点的集合

13、到已知角的两边距离相等的点的轨迹,是这个角的*分线

14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

15、定理不在同一直线上的三点确定一个圆。

16、圆是以圆心为对称中心的中心对称图形

17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

19、切线的性质定理:圆的切线垂直于经过切点的半径

20、弦切角定理:弦切角等于它所夹的弧对的圆周角

21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

22、弧长计算公式:L=n兀R/180

23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

25、圆方程

26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

30、集合的分类:有限集,无限集,空集。

31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

32、根据自变量的取值范围对函数进行分段.

33、空间中的*行问题

34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

35、忽视集合元素的三性致误

36、函数的单调区间理解不准致误

37、三角函数的单调性判断致误

38、对数列的定义、性质理解错误

39、数列中的最值错误

40、忽视三视图中的实、虚线致误


数学分析知识点总结 40句菁华(扩展2)

——数学分析知识点的总结 40句菁华

1、整式与分式

2、过一点有且只有一条直线和已知直线垂直

3、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

4、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

5、直角三角形斜边上的中线等于斜边上的一半

6、勾股定理

7、勾股定理的逆定理

8、定理2

9、矩形判定定理2

10、菱形性质定理1

11、菱形面积=对角线乘积的一半,即S=(a×b)÷2

12、菱形判定定理2

13、等腰梯形的两条对角线相等

14、梯形中位线定理

15、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

16、性质定理1

17、性质定理2

18、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

19、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

20、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

21、①直线L和⊙O相交

22、切线的判定定理

23、如果两个圆相切,那么切点一定在连心线上

24、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

25、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

26、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

27、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

28、乘方的定义:

29、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

30、空间点、直线、*面的位置关系

31、空间中的垂直问题

32、判断函数奇偶性忽略定义域致误

33、函数零点定理使用不当致误

34、三角函数的单调性判断致误

35、错位相减求和项处理不当致误

36、数列中的最值错误

37、面积体积计算转化不灵活致误

38、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

39、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。

40、列方程解应用题的常用公式:


数学分析知识点总结 40句菁华(扩展3)

——数学圆知识点总结 40句菁华

1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

2、定理:一条弧所对的圆周角等于它所对的圆心角的一半

3、①直线L和⊙O相交d﹤r

4、推论:经过切点且垂直于切线的直线必经过圆心

5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

6、圆的外切四边形的两组对边的和相等

7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

8、①两圆外离d﹥R+r

9、正三角形面积√3a2/4a表示边长

10、弧长计算公式:L=n兀R/180

11、圆心决定圆的位置,半径决定圆的大小。

12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

14、两个数相除,又叫做这两个数的比。比的后项不能为0.

15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、定理相交两圆的连心线垂直*分两圆的公共弦

20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

22、内公切线长= d-R-r外公切线长= d-R+r

23、定理一条弧所对的圆周角等于它所对的圆心角的一半

24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

26、一条弧所对的圆周角等于它所对的圆心角的一半。

27、圆的面积S=πr

28、圆锥侧面积S=rl

29、圆的标准方程

30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。

32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

33、圆的周长C=2πr=πd

34、圆锥侧面积S=πrl

35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧

36、①直线L和⊙O相交 d

37、切线的性质定理 圆的切线垂直于经过切点的半径

38、正n边形的每个内角都等于(n-2)×180°/n

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


数学分析知识点总结 40句菁华(扩展4)

——初一数学上册知识点总结 50句菁华

1、课后及时复习,温故而知新

2、正方体的*面展开图:

3、数轴:

4、有理数的运算:

5、添括号法则

6、直线的性质

7、圆:

8、等式的性质

9、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

10、角∠(angle)也是一种基本的几何图形.

11、等角的补角相等,等角的余角相等.

12、方程:含有未知数的等式就叫做方程.

13、解:解出所列方程.

14、有理数的概念

15、不等式解集的表示方法:

16、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

17、一元一次不等式与一次函数的综合运用:

18、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

19、解一元一次不等式组的步骤:

20、过一点有且只有一条直线和已知直线垂直

21、直线外一点与直线上各点连接的所有线段中,垂线段最短

22、两直线*行,内错角相等

23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24、在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

25、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

26、定义:*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。水*的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为*面直角坐标系的原点。

27、*面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

28、几何图形的组成

29、点动成线,线动成面,面动成体。

30、①直线公理:过两点有且只有一条直线.

31、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

32、培养学生获取信息,分析问题,处理问题的能力。

33、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

34、大于0的数是正数。

35、规定了原点,单位长度,正方向的直线称为数轴。

36、数的大小比较:

37、若a+b=0,则a,b互为相反数

38、乘除:同号得正,异号的负

39、相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

40、实数大小的比较:利用法则比较大小;利用数轴比较大小。

41、相遇问题:速度和×相遇时间=路程和

42、追赶问题:速度差×追赶时间=追赶距离

43、商品销售问题

44、储蓄问题

45、多项式:;

46、把多项式中的同类项合并成一项,叫做合并同类项;

47、方程的概念:

48、去分母

49、列方程解应用题的一般步骤:

50、任何数同零相乘都得零;


数学分析知识点总结 40句菁华(扩展5)

——数学立体几何知识点 40句菁华

1、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高

2、圆柱 r-底半径;h-高;C底面周长;S底底面积;S侧侧面积

3、空心圆柱 R-外圆半径;r-内圆半径;h-高

4、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径 V=22Rr2=2Dd2/4

5、过两点有且只有一条直线

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、同位角相等,两直线*行

8、内错角相等,两直线*行

9、推论3三角形的一个外角大于任何一个和它不相邻的内角

10、边边边公理(SSS)有三边对应相等的两个三角形全等

11、推论2有一个角等于60°的等腰三角形是等边三角形

12、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

13、四边形的外角和等于360°

14、*行四边形判定定理3对角线互相*分的四边形是*行四边形

15、菱形性质定理1菱形的四条边都相等

16、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角

17、菱形面积=对角线乘积的一半,即S=(a×b)÷2

18、对角线相等的梯形是等腰梯形

19、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰

20、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半

21、梯形中位线定理梯形的中位线*行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h

22、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例

23、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边

24、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

25、判定定理3三边对应成比例,两三角形相似(SSS)

26、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

28、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

29、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

30、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

31、推论2经过切点且垂直于切线的直线必经过圆心

32、圆的外切四边形的两组对边的和相等

33、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

34、①两圆外离d﹥R+r

35、定理把圆分成n(n≥3):

36、正三角形面积√3a/4

37、弧长计算公式:L=n∏R/180

38、直线,射线,线段

39、垂线的相关定义

40、在比较两条线段的长短时,要弄清那一条是垂线


数学分析知识点总结 40句菁华(扩展6)

——高考数学知识点总结 40句菁华

1、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

2、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

3、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

4、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

5、正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

6、.数量积与两个实数乘积的区别:

7、在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

8、定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

9、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

10、通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)

11、两条异面直线所成的角的范围:0°<α≤90°< p="">

12、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

13、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

14、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

15、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0。

16、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

17、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

18、掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

19、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

20、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。

21、注意放回抽样,不放回抽样;

22、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

23、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

24、如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.

25、列举法:{a,b,c……}

26、“包含”关系—子集

27、“相等”关系:A=B (5≥5,且5≤5,则5=5)

28、不含任何元素的集合叫做空集,记为

29、方程k=f(x)有解 k∈D(D为f(x)的值域);

30、a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

31、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);

32、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

33、恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

34、先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

35、主动复*结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

36、集合元素具有

37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

38、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

39、如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。)

40、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3