位置 > 首页 > 句子 >

数学圆知识点总结 40句菁华

日期:2022-12-03 00:00:00

1、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

2、定理:一条弧所对的圆周角等于它所对的圆心角的一半

3、①直线L和⊙O相交d﹤r

4、推论:经过切点且垂直于切线的直线必经过圆心

5、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

6、圆的外切四边形的两组对边的和相等

7、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

8、①两圆外离d﹥R+r

9、正三角形面积√3a2/4a表示边长

10、弧长计算公式:L=n兀R/180

11、圆心决定圆的位置,半径决定圆的大小。

12、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

13、用S表示圆的面积, r表示圆的半径,那么S=r^2 S环=(R^2-r^2)

14、两个数相除,又叫做这两个数的比。比的后项不能为0.

15、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

16、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、定理相交两圆的连心线垂直*分两圆的公共弦

20、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

21、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

22、内公切线长= d-R-r外公切线长= d-R+r

23、定理一条弧所对的圆周角等于它所对的圆心角的一半

24、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

25、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

26、一条弧所对的圆周角等于它所对的圆心角的一半。

27、圆的面积S=πr

28、圆锥侧面积S=rl

29、圆的标准方程

30、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

31、垂径定理:垂直于弦的直径*分这条弦,并且*分弦所对的弧。逆定理:*分弦(不是直径)的直径垂直于弦,并且*分弦所对的弧。

32、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

33、圆的周长C=2πr=πd

34、圆锥侧面积S=πrl

35、垂径定理 垂直于弦的直径*分这条弦并且*分弦所对的两条弧

36、①直线L和⊙O相交 d

37、切线的性质定理 圆的切线垂直于经过切点的半径

38、正n边形的每个内角都等于(n-2)×180°/n

39、定理 一条弧所对的圆周角等于它所对的圆心角的一半

40、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径


数学圆知识点总结 40句菁华扩展阅读


数学圆知识点总结 40句菁华(扩展1)

——初中数学重要知识点总结 40句菁华

1、求不等式的解集的过程,叫做解不等式。

2、用数轴表示不等式的方法。

3、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

4、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

5、一元一次不等式组的解法

6、不等式与不等式组

7、列一元一次方程解应用题:

8、混合运算法则:先乘方,后乘除,最后加减。

9、代数式

10、解一元二次方程的步骤:

11、角

12、同角或等角的余角相等——余角=90-角度。

13、过一点有且只有一条直线和已知直线垂直

14、直线外一点与直线上各点连接的所有线段中,垂线段最短

15、同位角相等,两直线*行

16、同旁内角互补,两直线*行

17、推论

18、三角形内角和定理:

19、推论1

20、直角三角形斜边上的中线等于斜边上的一半

21、矩形性质定理1

22、菱形性质定理2

23、三角形中位线定理

24、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

25、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

26、性质定理1

27、性质定理2

28、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

29、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

30、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

31、切线的性质定理

32、①两圆外离

33、弧长计算公式:L=n兀R/180——》L=nR

34、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

35、切线的性质定理圆的切线垂直于经过切点的半径

36、推论1经过圆心且垂直于切线的直线必经过切点

37、定理相交两圆的连心线垂直*分两圆的公共弦

38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正三角形面积√3a/4a表示边长

40、弧长计算公式:L=n兀R/180


数学圆知识点总结 40句菁华(扩展2)

——数学知识点总结 40句菁华

1、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线

3、2.1直线与*面*行的判定

4、2.2*面与*面*行的判定

5、两个*面*行的判定定理:一个*面内的两条交直线与另一个*面*行,则这两个*面*行。

6、2.3—2.2.4直线与*面、*面与*面*行的性质

7、定理:一条直线与一个*面*行,则过这条直线的任一*面与此*面的交线与该直线*行。

8、定理:垂直于同一个*面的两条直线*行。

9、Venn图:

10、“相等”关系:A=B(5≥5,且5≤5,则5=5)

11、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

12、圆的外部可以看作是圆心的距离大于半径的点的集合

13、到已知角的两边距离相等的点的轨迹,是这个角的*分线

14、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

15、定理不在同一直线上的三点确定一个圆。

16、圆是以圆心为对称中心的中心对称图形

17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

18、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

19、切线的性质定理:圆的切线垂直于经过切点的半径

20、弦切角定理:弦切角等于它所夹的弧对的圆周角

21、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

22、弧长计算公式:L=n兀R/180

23、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

24、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

25、圆方程

26、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

27、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

28、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

29、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

30、集合的分类:有限集,无限集,空集。

31、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

32、根据自变量的取值范围对函数进行分段.

33、空间中的*行问题

34、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

35、忽视集合元素的三性致误

36、函数的单调区间理解不准致误

37、三角函数的单调性判断致误

38、对数列的定义、性质理解错误

39、数列中的最值错误

40、忽视三视图中的实、虚线致误


数学圆知识点总结 40句菁华(扩展3)

——数学中考圆的知识点 40句菁华

1、反证法

2、圆的定义

3、直线圆的与置位关系

4、线直与圆有唯公一共时,点做直叫与圆线切

5、弦切角于所等夹弧所对的的圆心角

6、圆切线垂的直过切于点半径

7、弧、优弧、劣弧

8、圆的轴对称性

9、圆心角

10、弧、弦、弦心距、圆心角之间的关系定理

11、切线长定理

12、圆和圆的位置关系

13、圆心距

14、圆和圆位置关系的性质与判定

15、中心角

16、正多边形的定义

17、正多边形的画法

18、圆锥的侧面积

19、圆有无数条半径,有无数条直径。

20、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

21、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

22、分数乘分数是求一个数的几分之几是多少。

23、求分数的倒数是交换分子分母的位置。

24、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

25、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

26、如果两个圆相切,那么切点一定在连心线上

27、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

28、如果在一个顶点周围有k个正n边形的'角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4

29、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径

30、制定计划。从而使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。

31、独立作业。这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。

32、直线与圆的位置关系

33、到角两边距离相等的点的轨迹是:角的*分线;

34、圆心:圆中心一点叫做圆心。用字母“O”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

35、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2

36、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2

37、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是π:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2。

38、环形的周长=外圆周长+内圆周长

39、半圆面积=圆面积÷2公式为:S=πr2÷2

40、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。


数学圆知识点总结 40句菁华(扩展4)

——中考知识点总结 100句菁华

1、乐音的三个特征:音调、响度、音色。1)音调:是指声音的高低,它与发声体的频率有关。2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关。

2、常见的温度计:1)实验室用温度计;2)体温计;3)寒暑表

3、固体、液体、气体是物质存在的三种状态。

4、熔点或凝固点:晶体熔化时保持不变的温度叫熔点;晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固体相同。

5、汽化:物质从液态变成气态的过程叫汽化,汽化的方式有蒸发和沸腾,都要吸热。

6、升华和凝华:物质从固态直接变成气态叫升华【升华吸热】;物质从气态直接变成固态叫凝华【凝华放热】。

7、光源:自身能够发光的物体叫光源。

8、光的三原色:红、绿、蓝。

9、*面镜成像特点:1)*面镜成的是虚像;2)像与物大小相等;3)像与物体到镜面的距离相等;4)相与物的连线与镜面垂直,另*面镜里成的像与物体左右倒置。

10、误差:测量值与真实值之间的差异,叫误差。

11、匀速直线运动:快慢不变、经过的路线是直线的运动。

12、速度在单位时间内通过的路程。S=vt 单位:m/s或km/h

13、*均速度:在变速运动中,用总路程除以所用的时间可得物体在这段路程中的快慢程度,这就是*均速度。

14、光年:指光在真空中行进一年所经过的距离。

15、密度是物质的一种特性,不同种类的物质密度一般不同。

16、分子是原子组成的,原子由原子核和核外电子组成,原子核是由质子和中子组成。

17、弹簧测力计原理:在弹性限度内,弹簧的伸长与受到的拉力成正比。

18、减小有害摩擦的方法:1)使接触面光滑、减小压力;2)用滚动代替滑动;3)滴加润滑油;4)让物体直接脱离接触。

19、大气压强产生的原因:空气受到重力作用而产生的,大气压强随高度的增大而减小。

20、*衡法:F=G

21、功的计算:功【W】=力【F】×距离【S】

22、机械效率:有用功跟总功的比值。

23、弹性势能:物体由于发生弹性而形变具有的能。物体的弹性变大,弹性势能也变大。

24、机械能:动能和势能的统称。【机械能=动能+势能】【单位:焦耳】

25、物体吸收热量,温度升高时,内能增大;物体放热,温度降低时,内能减小。

26、热机的效率:用来做有用的那部分能量和燃料完全燃烧放出的能量之比。

27、电源:能提供持续电流或电压的装置。

28、电路图:用符号表示电路连接的图。

29、滑动变阻器:

30、公式:I=U/R

31、额定功率【P】:用电器在额定电压下的功率。

32、进户线分火线和零线;可用电笔测量,若电笔氖管发光则为火线。

33、电路中电流过大原因:1)电路发生短路;2)电器总功率过大。

34、任何磁体都有2个极:一个是N另一个是S极。

35、电磁继电器:实质上是一个利用电磁铁来控制的开关。它的作用可实现远距离操作,利用低电压、弱电流来控制高电压、高电流。还可实现自动控制。

36、电磁感应现象中是接卸能转化为电能。

37、磁场对电流的作用:通电导线在磁场中腰受到磁力的作用。是由电能转化为机械能。应用是制成电动机。

38、通电导体在磁场中手力方向:跟电流方向和磁感线方向有关。

39、直流电:电流方向不变的电流。

40、现代“信息高速公路”两大支柱:卫星通讯、管线通信。

41、*是利用轻核的聚变释放能量。

42、通常情况下,声音在固体中传播最快,其次是液体,气体

43、*面镜成像实验玻璃板应与水*桌面垂直放置

44、凸透镜成实像时,物如果换到像的位置,像也换到物的位置

45、重力是由于地球对物体的吸引而产生的

46、两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力

47、影响滑动摩擦力大小的两个因素:

48、物体不受力或受*衡力作用时可能静止也可能保持匀速直线运动

49、1m3水的质量是1t,1cm3水的质量是1g

50、增大压强的方法:

51、物体在漂浮和悬浮状态下:浮力=重力

52、电路的组成:电源、开关、用电器、导线

53、电路的三种状态:通路、断路、短路

54、电压是形成电流的原因

55、磁场中某点磁场的方向:

56、电流越大,线圈匝数越多电磁铁的磁性越强

57、磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的。

58、电磁继电器:实质上是一个利用电磁铁来控制的开关。它的作用可实现远距离操作,利用低电压、弱电流来控制高电压、强电流。还可实现自动控制。

59、产生感生电流的条件:①电路必须闭合;②只是电路的一部分导体在磁场中;③这部分导体做切割磁感线运动。

60、发电机的原理是根据电磁感应现象制成的。交流发电机主要由定子和转子。

61、交流电:周期性改变电流方向的电流。

62、锅铲、手勺、漏勺铝锅等炊具的炳都用木头或塑料,木头、塑料是热的不良导体,以便在烹饪过程中不烫手。

63、往保温瓶灌开水时,不灌满,能更好地保温。-------因为未满时,瓶口处有层气体,它是热的不良导体,能更好地防止热量的散失。

64、当打开啤酒盖时,总会冒出一些雾气,这是为什么?——啤酒中溶有大量的二氧化碳,且内部压强大于外界的大气压强,当开启瓶盖时,二氧化碳逸出,体积变大,膨胀对外做功,本身的内能减小,温度降低,周围的水蒸汽遇冷液化形成“雾”。

65、高压锅的原理——利用了沸点跟气压的关系。

66、过年吃饺子是*的习俗,煮饺子时,从水开饺子下锅到煮熟后捞出的过程,有很多物理现象,请你说出你所知道的,并用物理知识解释。

67、简单机械的应用:

68、汽车爬坡时要调为低速:由P=FV,功率一定时,降低速度,可增大牵引力。

69、冬天,为防冻坏水箱,入夜时要排尽水箱中的水——防止热胀冷缩的危害

70、汽车旁的观后镜,交叉路口的观察镜用的都是凸面镜,可以开阔视野。

71、钳柄套上塑料套是方便电工使用时能够绝缘,防止漏电。

72、队员的质量大容易取胜———质量大惯性大改变运动状态难度大容易取胜。

73、在初中阶段,所有的酸和碱之间都可以发生反应生成盐和水

74、碱和非金属氧化物的反应不是复分解反应,金属氧化物和酸的反应是复分解反应

75、在初中阶段,大部分碱是不可溶的,只有氢氧化钠、钾、钡、钙(微溶)和氨水可以在溶液中存在,相反,大部分酸是可溶的

76、单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

77、多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

78、为什么要牢牢把握先进文化的前进方向?如何把握这一方向?

79、显微镜的应用

80、细胞分化形成了各种不同的组织。组织是指由形态相似,结构、功能相同的细胞联合在一起形成的。(P62)。

81、区分常见的裸子植物和被子植物裸子植物:种子是裸露的,外面没有果皮包被。

82、因习惯而错读

83、准确理解文章的基本内容

84、唐代工艺品中成就最为卓著的首推唐三彩,殉葬的俑和驼、马动物是其中的精品。

85、元代永乐宫三清殿壁画的作者是民间画工马君祥等,而纯阳殿的壁画构图则是采用了连环画的表现形式。

86、明末画家陈洪绶9岁时创作的九歌图,其中以屈子行吟图为最佳。

87、被称为我国古代园林景观雕塑第一座丰碑的是汉代昆明池石刻牵牛像和织女。

88、传为东晋画家顾恺之的绘画作品有三件,即《女史箴图》、《洛神赋图》、《洛神赋图》。

89、吴昌硕的艺术道路与众不同,他从制印开始,又学习书法辞章,最后取得绘画成就。

90、《霍去病墓前石刻》被称为“*石刻,气魄深沉雄大”的杰出代表,其主体雕刻是《马踏匈奴》。

91、元代肖像画家王绎,驰名江浙一带,著《写像秘诀》一书。

92、人类最早的造型艺术产生于旧石器时代晚期,即距今三万到一万多年之间。

93、创造人体比例为1:7的希腊雕刻家是爱奥尼亚,其理论具体体现在他的雕刻《荷矛者》中。

94、罗马式教堂是以巴西里卡式演变过来的,在封建割据的情况下,它也有封建城堡的特点。

95、法国写实主义绘画的旗手是库尔贝,其代表作品有《画室》、《奥尔南的葬礼》等。

96、十九世纪英国的两位杰出的风景画家是透纳和康斯太勃尔。

97、被称之为“原始的维纳斯”的著名代表作,是在维也纳附近的温林多夫出土的女性雕像。

98、欧洲“巴洛克”艺术在雕刻方面的代表是意大利的贝尼尼,在绘画方面的代表是佛兰德斯的鲁本斯。

99、在法国印象派中,以画人物著称的画家有马奈、德加和雷诺阿;以画风景著称的画家又莫奈、西斯莱 和毕沙罗。

100、(类似色)也叫邻近色,指(色相)比较接近的各种颜色。如紫红、红、橘红等。


数学圆知识点总结 40句菁华(扩展5)

——初中数学知识点总结 100句菁华

1、如果两条直线都和第三条直线*行,这两条直线也互相*行

2、两直线*行,同旁内角互补

3、角边角公理(

4、定理3

5、勾股定理

6、*行四边形性质定理2

7、*行四边形判定定理3

8、矩形判定定理1

9、矩形判定定理2

10、几种几何图形的重心:

11、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

12、乘方的定义:

13、*行于三角形的一边,并且和其他两边相交的直线,

14、相似三角形判定定理1

15、混合运算法则:先乘方,后乘除,最后加减。

16、几何图形

17、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

18、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

19、性质定理3

20、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

21、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

22、圆是定点的距离等于定长的点的集合

23、圆的外部可以看作是圆心的距离大于半径的点的集合

24、同圆或等圆的半径相等

25、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

26、到已知角的两边距离相等的点的轨迹,是这个角的*分线

27、去括号法则

28、角的度量

29、角的*分线

30、角的性质

31、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

32、①直线L和⊙O相交

33、一元一次方程

34、切割线定理

35、有理数加法

36、正三角形面积√3a^2/4

37、弧长计算公式:L=n兀R/180——》L=nR

38、列一元一次方程解应用题:

39、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

40、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

41、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

42、三角形内角和定理:三角形三个内角的和等于180°

43、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直*分线。

44、等腰三角形的判定:等角对等边。

45、等边三角形的判定:三个角都相等的三角形是等腰三角形。

46、s菱=争6(n、6分别为对角线长)

47、单项式的系数:是指单项式中的数字因数;

48、对称性:等腰梯形是轴对称图形

49、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

50、推论2经过切点且垂直于切线的直线必经过圆心

51、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

52、扇形面积公式:S扇形=n兀R^2/360=LR/2

53、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

54、求出每段的解析式.

55、函数图象的最低点和最高点.

56、一元一次方程根的情况

57、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

58、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

59、大于0的数叫做正数。

60、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

61、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

62、四边形

63、图形的*移和旋转

64、统计

65、如果两条直线都和第三条直线*行,这两条直线也互相*行。

66、同位角相等,两直线*行。

67、两直线*行,内错角相等。

68、推论1直角三角形的两个锐角互余。

69、推论2三角形的一个外角等于和它不相邻的两个内角的和。

70、角的*分线是到角的两边距离相等的所有点的集合。

71、定理四边形的内角和等于360°。

72、*行四边形性质定理1*行四边形的对角相等。

73、*行四边形性质定理2*行四边形的对边相等。

74、*行四边形判定定理4一组对边*行相等的四边形是*行四边形。

75、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。

76、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

77、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰。

78、*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。

79、性质定理2相似三角形周长的比等于相似比。

80、圆的内部可以看作是圆心的距离小于半径的点的集合。

81、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧。

82、推论2圆的两条*行弦所夹的弧相等。

83、圆是以圆心为对称中心的中心对称图形。

84、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

85、定理相交两圆的连心线垂直*分两圆的公共弦。

86、弧长计算公式:L=n兀R/180。

87、乘法与因式分解

88、三角不等式

89、判别式:

90、垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

91、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

92、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

93、*行:两条直线不相交。互相*行的两条直线,互为*行线。a∥b(在同一*面内,不相交的两条直线叫做*行线。)

94、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)

95、证明:推理的过程叫做证明。

96、坐标:数轴(或*面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。

97、原点:两个数轴的交点叫做*面直角坐标系的原点。

98、特殊位置的点的坐标的特点:

99、三大规律

100、一元一次不等式:含有一个未知数,未知数的次数是1的不等式。


数学圆知识点总结 40句菁华(扩展6)

——中考数学知识点 50句菁华

1、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

2、直角坐标系中,点A(3,0)在轴上。

3、直角坐标系中,点A(-2,3)在第四象限。

4、直角坐标系中,点A(-2,1)在第二象限。

5、数据1,2,3,4,5的中位数是3.

6、cs30°=。

7、sin260°+cs260°=1.

8、tan45°=1.

9、任意一个三角形一定有一个外接圆。

10、同圆或等圆的半径相等。

11、经过圆心*分弦的直径垂直于弦。

12、非负数:正实数与零的统称。(表为:x≥0)

13、相反数:①定义及表示法

14、奇数、偶数、质数、合数(正整数-自然数)

15、单项式与多项式

16、系数与指数

17、算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)

18、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

19、科学记数法:(1≤a<10,n是整数=

20、个体:总体中每一个考察对象。

21、常用定理:①同*行于一条直线的两条直线*行(传递性);②同垂直于一条直线的两条直线*行。

22、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

23、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

24、一次函数

25、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

26、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

27、圆的定义(两种)

28、正多边形及计算

29、圆柱、圆锥的侧面展开图及相关计算

30、作法与图形:通过如下3个步骤

31、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

32、抛物线是轴对称图形。对称轴为直线

33、一次项系数b和二次项系数a共同决定对称轴的位置。

34、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤—b/2a时,y随x的增大而减小;当x≥—b/2a时,y随x的增大而增大。若a<0,当x≤—b/2a时,y随x的增大而增大;当x≥—b/2a时,y随x的增大而减小。

35、用待定系数法求二次函数的解析式

36、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

37、见直径往往作直径上的'圆周角

38、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

39、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

40、(P11)小数四则运算顺序跟整数是一样的。

41、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数 求出商的近似数。

42、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

43、方程的解是一个数;

44、长方形框架拉成*行四边形,周长不变,面积变小。

45、5 4 0 0 1

46、重心是三角形内到三边距离之积最大的点。

47、sin260+ cos260= 1.

48、tan45= 1.

49、cos60+ sin30= 1.

50、直角三角形两个锐角互余。


数学圆知识点总结 40句菁华(扩展7)

——七年级下册数学知识点总结 40句菁华

1、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。

2、对于数轴上的任意两个点,靠右边的点所表示的数较大。

3、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。

4、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

5、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐

6、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。

7、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

8、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。

9、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

10、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

11、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

12、两条直线被第三条直线所截:

13、垂直公理:过一点有且只有一条直线与已知直线垂直。

14、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

15、*行线的性质:

16、*面上不相重合的两条直线之间的位置关系为_______或________

17、倒数

18、大于0的数叫做正数(positive number)。

19、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

20、有理数减法法则

21、有理数中仍然有:乘积是1的两个数互为倒数。

22、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

24、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)

25、根据有理数的乘法法则可以得出

26、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

27、从一个数的'左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

28、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

29、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

30、包围着体的是面(surface),面有*的面和曲的面两种。

31、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

32、角∠(angle)也是一种基本的几何图形。

33、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary angle),即其中一个角是另一个角的补角

34、等角的补角相等,等角的余角相等。

35、相反数的几何意义

36、相反数的表示方法

37、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。

38、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

39、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

40、整式加减的一般步骤:


数学圆知识点总结 40句菁华(扩展8)

——数学分析知识点总结 40句菁华

1、函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

2、三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

3、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

4、韦达定理

5、一元二次方程根的情况

6、两点之间线段最短

7、同旁内角互补,两直线*行

8、三角形内角和定理:

9、推论3

10、全等三角形的对应边、对应角相等

11、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

12、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

13、圆是定点的距离等于定长的点的集合

14、代数式

15、整式与分式

16、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

17、如果两条直线都和第三条直线*行,这两条直线也互相*行

18、边边边公理(SSS):有三边对应相等的两个三角形全等

19、定理1

20、等腰三角形的判定定理

21、勾股定理的逆定理

22、*行四边形性质定理1

23、*行四边形性质定理2

24、*行四边形判定定理4

25、矩形性质定理2

26、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

27、梯形中位线定理

28、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

29、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

30、性质定理2

31、同圆或等圆的半径相等

32、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

33、到已知角的两边距离相等的点的轨迹,是这个角的*分线

34、①直线L和⊙O相交

35、切线长定理

36、弦切角定理

37、弧长计算公式:L=n兀R/180——》L=nR

38、集合表示方法①列举法;②描述法;③韦恩图;④数轴法

39、元素的互异性;

40、集合的表示:{…}如{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}


数学圆知识点总结 40句菁华(扩展9)

——物理的知识点总结 40句菁华

1、测量:

2、真空中的光速是宇宙中最快的速度,用字母c表示:c=3×108 m/s光在水中的速度约是真空中的3/4

3、光从一种介质斜射入另一种介质时,传播方向发生偏折,这种现象叫光的折射。发生折射时,同时一定也发生发射。折射现象中光路也是可逆的。

4、中间厚边缘薄的透镜叫凸透镜,边缘厚中间薄的透镜叫凹透镜。通过光心的光线不改变传播方向。

5、望远镜的目镜和物镜都是凸透镜,目镜相当于放大镜,物镜相当于照相机镜头。显微镜的目镜和物镜也是凸透镜,目镜相当于放大镜,物镜相当于投影仪镜头。

6、物质从液态变成气态叫做汽化,从气态变成液态叫做液化。汽化吸热,液化放热。汽化分为蒸发和沸腾。蒸发现象:在任何温度下,发生在液体表面,缓慢的汽化现象。影响蒸发的因素:①液体温度的高低②液体的表面积③液体表面空气流动的快慢沸腾:在一定温度下,在液体内部和表面剧烈的汽化现象。

7、善于导电的物体叫导体,不善于导电的物体叫绝缘体。金属靠自由电子导电,酸碱盐溶液靠正负离子导电。

8、增大压强与减小压强的方法:

9、液体内部压强的公式:

10、连通器中各容器液面相*的条件是:(1)连通器中只有一种液体,(2)液体静止。

11、马德堡半球实验是证明大气压存在的著名实验,托里拆利实验是测定大气压值的重要实验。

12、阿基米德原理:浸在液体中的物体受到向上的浮力,浮力的大小等于物体排开的液体所受的重力。这个规律叫做阿基米德原理,即F浮=G排=ρ液gv排

13、物体浮沉条件的应用:

14、流体流动时,流速大的地方压强小,流速小的地方压强大。

15、成像原理:光的反射定理

16、作 用:成像、 改变光路

17、凹镜:定义:用球面的 内 表面作反射面。

18、反射现象中,光路是可逆的(互看双眼)

19、利用光的反射定律画一般的光路图(要求会作):

20、物体到透镜的距离(物距)小于二倍焦距,大于一倍焦距,成的是倒立、放大的实像;

21、光的反射:光从一种介质射向另一种介质的交界面时,一部分光返回原来介质中,使光的传播方向发生了改变,这种现象称为光的反射

22、在光的反射中光路可逆

23、电路:把电源、用电器、开关、导线连接起来组成的电流的路径。

24、电源:能提供持续电流(或电压)的装置。

25、在电源外部,电流的方向是从电源的正极流向负极。

26、电流表的使用规则:①电流表要串联在电路中;②电流要从"+"接线柱流入,从"—"接线柱流出;③被测电流不要超过电流表的量程;④绝对不允许不经过用电器而把电流表连到电源的两极上。

27、熟记的电压值:①1节干电池的电压1。5伏;②1节铅蓄电池电压是2伏;③家庭照明电压为220伏;④安全电压是:不高于36伏(我国规定安全电压额定值的等级为42、36、24、12、6伏)⑤工业电压380伏。

28、功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(),t:做功所用时间(s)}

29、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vax=P额/f)

30、电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

31、重力势能:EP=gh {EP :重力势能(),g:重力加速度,h:竖直高度()(从零势能面起)}

32、动能定理(对物体做正功,物体的动能增加):

33、轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

34、“二力杆”(轻质硬杆)*衡时二力必沿杆方向。

35、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

36、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

37、匀变速直线运动中的*均速度

38、匀变速直线运动中的

39、相对运动

40、匀加速直线运动位移公式:S = At+ Bt^2

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3