位置 > 首页 > 句子 >

数学必修一知识点 50句菁华

日期:2022-12-02 00:00:00

1、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

2、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

3、集合的表示:{ … } 如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

4、不含任何元素的集合叫做空集,记为Φ

5、定义域:能使函数式有意义的实数x的集合称为函数的定义域。

6、函数图象知识归纳

7、函数最大(小)值(定义见课本p36页)

8、集合的表示方法:常用的有列举法、描述法和图文法

9、交集:A∩B={x|x∈A且x∈B}

10、有关子集的几个等价关系

11、集合,,,且,则有

12、集合,,____________.

13、已知集合A={x|},若A∩R=,则实数m的取值范围是

14、已知集合,B=,若,且求实数a,b的值。

15、设,集合,,且A=B,求实数x,y的值。

16、集合的表示

17、集合的三个特性

18、函数的奇偶性

19、判断对应是否为映射时,抓住两点:

20、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

21、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

22、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

23、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数

24、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

25、直线与*面*行(核心)

26、常利用三角形中位线、*行四边形对边、已知直线作一*面找其交线

27、直线与*面垂直

28、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

29、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

30、向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查*面向量的基本概念和运算律;考查*面向量的坐标运算;考查*面向量与几何、三角、代数等学科的综合性问题。

31、开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

32、求函数的定义域有哪些常见类型?

33、如何用定义证明函数的单调性?

34、如何利用导数判断函数的单调性?

35、你熟悉周期函数的定义吗?

36、抛物线有一个顶点P,坐标为

37、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈,当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数、此时,的次方根用符号表示、式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand),当是偶数时,正数的次方根有两个,这两个数互为相反数、此时,正数的正的次方根用符号表示,负的次方根用符号—表示、正的次方根与负的次方根可以合并成±(>0)、由此可得:负数没有偶次方根。

38、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。

39、代数法)求方程的实数根;

40、几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

41、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

42、二次函数根的问题——一题多解

43、函数y=a^x与y=-a^-x关于坐标原点对称

44、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

45、善于用“1“巧解题

46、三角问题的非三角化解题策略

47、三角函数中的数学思想方法

48、对数函数的性质:

49、幂函数性质归纳.

50、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。


数学必修一知识点 50句菁华扩展阅读


数学必修一知识点 50句菁华(扩展1)

——必修一知识点总结 40句菁华

1、生物界与非生物界的统一性和差异性

2、研究细胞膜的常用材料:人或哺乳动物成熟红细胞

3、细胞膜主要成分:脂质和蛋白质,还有少量糖类

4、细胞膜功能:

5、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→

6、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质

7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同。

8、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(-COOH)与另一个氨基酸分子的氨基(-NH2)相连接,同时脱去一分子水,如图:

9、糖类:

10、水存在形式运送营养物质及代谢废物

11、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时

12、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA

13、叶绿素a

14、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。

15、空气中CO2浓度,土壤中水分多少,光照长短与强弱,光的成分及温度高低等,都是影响光合作用强度的外界因素:可通过适当延长光照,增加CO2浓度等提高产量。

16、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。

17、清朝发展

18、“海禁”的表现

19、摩尔(mol):把含有6、02×1023个粒子的任何粒子集体计量为1摩尔。

20、物质的量=气体的体积/气体摩尔体积n=V/Vm

21、离子反应

22、氧化还原反应中概念及其相互关系如下:

23、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

24、指数函数的图象和性质

25、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

26、函数零点的求法:

27、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

28、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

29、物镜:(有)螺纹,镜筒越(长),放大倍数越大。

30、放大倍数=物镜的放大倍数х目镜的放大倍数

31、一行细胞的数目变化可根据视野范围与放大倍数成反比

32、圆行视野范围细胞的数量的变化可根据视野范围与放大倍数的*方成反比计算

33、创立者:(施莱登,施旺)

34、生物体生命活动的物质基础是:组成生物体的各种化学元素和化合物。

35、组成生物体的化学元素的种类大体相同,但含量相差很大。

36、生物界与非生物界具有统一性:组成细胞的元素在无机自然界都可以找到,没有一种是细胞所特有的。

37、不能通过转氨基作用合成必需氨基酸的原因:细胞中缺少合成这些必需氨基酸的中间产物。

38、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

39、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.


数学必修一知识点 50句菁华(扩展2)

——生物必修一知识点 40句菁华

1、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核

2、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区别在于R基的不同

3、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键

4、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别

5、蛋白质功能:

6、脂质:磷脂(生物膜重要成分)

7、细胞内水的存在形式为结合水和自由水

8、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。

9、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜

10、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。

11、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。

12、酶的本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA

13、ATP与ADP相互转化:A—P~P~PA—P~P+Pi+能量

14、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并生成ATP过程

15、细胞膜主要成分:脂质和蛋白质,还有少量糖类

16、新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。

17、酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。

18、1783年,意大利科学家斯巴兰让尼用实验证明:胃具有化学性消化的作用;

19、1836年,德国科学家施旺从胃液中提取了胃蛋白酶;

20、呼吸作用(也叫细胞呼吸):指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其它产物,释放出能量并生成ATP的过程。

21、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。

22、发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。

23、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。

24、生物界与非生物界的统一性和差异性

25、无机盐

26、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”

27、核仁:与某种RNA的合成以及核糖体的形成有关。

28、核孔:实现细胞核与细胞质之间的物质交换和信息交流。

29、基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。

30、减数分裂过程中染色体数目的减半发生在减数第一次分裂中。

31、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向*行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。

32、碱基互补配对原则在碱基含量计算中的应用:

33、DNA的复制:

34、核酸种类的判断:首先根据有T无U,来确定该核酸是不是DNA,又由于双链DNA遵循碱基互补配对原则:A=T,G=C,单链DNA不遵循碱基互补配对原则,来确定是双链DNA还是单链DNA。

35、动物细胞的吸水和失水

36、植物细胞的吸水和失水

37、植物吸水方式有两种:

38、对矿质元素的吸收

39、酶浓度

40、影响酶活性的条件(要求用控制变量法,自己设计实验)


数学必修一知识点 50句菁华(扩展3)

——高一政治必修一知识点总结 40句菁华

1、储蓄存款的分类。目前,我国的储蓄主要有活期存款和定期存款两大类。作为投资对象,活期储蓄流动性强、灵活方便,适合个人日常生活待用资金的存储,但收益低定期储蓄流动性较差,收益高于活期储蓄,但一般低于债券和股票。与低收益相对应,因为银行的信用比较高,储蓄存款比较安全,风险较低,但也存在通货膨胀情况下存款贬值的风险,以及定期存款提前支取而损失利息的风险。

2、消费反作用生产

3、坚持公有制为主体多种所有制共同发展的必然性:

4、企业兼并的意义:

5、为什么要有序的参与政治生活?

6、我国*的性质:

7、我国*的宗旨与基本原则。

8、有效制约和监督权利的关键,是建立健全制约和监督机制,一靠民主,二靠法制。具体说,①发挥人民民主对权力的制约和监督,就要切实保障广大人民的选举权、知情权、参与权、监督权,使人民能够有效的监督*权力的运行;②加强法制对权力的制约和监督,就要坚持用制度管权、管事、管人,健全质询、问责、经济责任审计、引咎辞职、罢免等制度。

9、*的权威及其体现:

10、消费心理:

11、相关商品的价格变动对需求量的影响

12、商品的含义:商品是用于交换的劳动产品。

13、货币的产生:货币是商品交换发展到一定阶段的产物;

14、纸币的产生和发展:

15、常用信用工具:

16、外汇:外汇是用外币表示的用于国际间结算的支付手段。

17、保持人民币币值基本稳定的含义及意义:即对内保持物价总水*稳定,对外保持人民币汇率稳定,对人民生活安定,对国民经济持续快速健康发展,对世界金融的稳定、经济的发展,具有重要意义。

18、货币的含义?货币的本质?货币的基本职能?

19、货币流通规律?公式?

20、价格和价值的关系?

21、价格变动会产生哪些影响?

22、影响人们消费行为的消费心理主要有哪些?

23、绿色消费的含义?特征?

24、为什么坚持勤俭节约,艰苦奋斗?

25、我国初级阶段的分配制度是什么?

26、财政收入的来源?影响因素有哪些?

27、财政的巨大作用有哪些?

28、税收具有强制性、无偿性和固定性的特征。

29、为什么说纸币发行量过多或过少都是不好的?

30、如何正确对待货币?

31、保护人民币汇率的基本稳定有何意义?

32、企业的含义:企业是市场经济活动的主要参加者,是国民经济的细胞。它是以营利为目的而从事生产经营活动,向社会提供商品或服务的经济组织。

33、公司经营如何才能取得发展(公司能否经营成功,取决于什么因素)

34、依法维护劳动者权益

35、汇率:又称汇价,是指两种货币之间的兑换比率(如果用100单位外币可以兑换成更多的人民币,说明外币的汇率升高,外币升值;反之,则说明外币汇率跌落,外币贬值)人民币升值有利于进口,不利于出口。反之,相反。

36、各种因素对商品价格的影响,是通过改变商品的供求关系来实现的。

37、价值决定价格

38、一般说来,物价水*与人们的消费水*成反比——稳定物价

39、消费类型:

40、做一个理智的消费者(树立正确的消费观)


数学必修一知识点 50句菁华(扩展4)

——数学知识点 100句菁华

1、公式。(每两个相邻的时间单位之间的进率是60)

2、①相同分母的分数相加、减:分母不变,只和分子相加、减。

3、利用等底等高的两个三角形面积相等。

4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

6、有理数乘法法则:

7、乘方的定义:

8、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

9、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

10、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

11、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

12、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

13、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

14、圆方程

15、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

16、被除数÷除数=商

17、被除数=商×除数

18、从个位加起;

19、个位不够减从十位退1,在个位加10再减。

20、末位不管有几个0都不读。

21、角

22、(1)什么是互相垂直?什么是垂线?什么是垂足?

23、加法意义和运算定律

24、什么是被减数?什么是减数?什么叫差?

25、乘法

26、什么是单名数?

27、什么是有限小数?

28、什么是质数(或素数)?

29、什么是分解质因数?

30、怎么比较分数大小?

31、圆的周长总是直径的三倍多一些。

32、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

33、求比一个数多(或少)几分之几的数是多少的解题方法

34、亿以内的数的认识:

35、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

36、学生在动手操作中,可以画出并能计算出图形的周长。

37、已经学过的面积单位有*方厘米(cm2)、*方分米(dm2)、*方米(m2)、公顷、*方千米(km2)。

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、推论 三角形两边的差小于第三边

41、推论2 三角形的一个外角等于和它不相邻的两个内角的和

42、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

43、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

44、直角三角形斜边上的中线等于斜边上的一半

45、矩形判定定理2 对角线相等的*行四边形是矩形

46、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线*分一组对角

47、菱形判定定理2 对角线互相垂直的*行四边形是菱形

48、正方形性质定理1 正方形的四个角都是直角,四条边都相等

49、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

50、等腰梯形的两条对角线相等

51、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

52、不含任何元素的集合叫做空集,记为

53、一个加数=和+另一个加数

54、商中间或末尾有0的除法:

55、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

56、代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)

57、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

58、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

59、比值通常用分数、小数和整数表示。

60、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

61、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

62、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

63、当1和任何字母相乘时,“ 1” 省略不写.

64、检验,写答语

65、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

66、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

67、无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

68、知识点概述

69、100以内退位减:361—9=27提炼方法:个位用弧线连上,十位减1,个位加补数

70、数学名词。一组具有某种共同性质的数学元素:有理数的~。

71、判断函数奇偶性忽略定义域致误

72、函数零点定理使用不当致误

73、忽视三视图中的实、虚线致误

74、数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

75、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

76、2空间几何体的三视图和直观图

77、判断两*面*行的方法有三种:

78、3.1直线与*面垂直的判定

79、一般地,如果一个正数x的*方等于a,即x2=a,那么这个正数x叫做a的算术*方根.a叫做被开方数.

80、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

81、被开方数一定是非负数.

82、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

83、整式与分式

84、一元二次方程的二次函数的关系

85、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

86、推论2等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合,即三线合一;

87、*行四边形判定定理4

88、矩形性质定理2

89、菱形判定定理1

90、正方形性质定理1

91、等腰梯形判定定理

92、性质定理1

93、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

94、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

95、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

96、切线长定理

97、圆的外切四边形的两组对边的和相等

98、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

99、扇形面积公式:S扇形=n兀R^2/360=LR/2

100、列方程解应用题的常用公式:


数学必修一知识点 50句菁华(扩展5)

——中考数学知识点 60句菁华

1、一元二次方程3x2+5x-2=0的常数项是-2.

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

3、反比例函数的图象在第一、三象限

4、经过圆心*分弦的直径垂直于弦。

5、直线与圆有唯一公共点时,叫做直线与圆相切。

6、三角形的外接圆的圆心叫做三角形的外心。

7、运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

8、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

9、指数

10、乘法公式:(正、逆用)

11、因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

12、样本容量:样本中个体的数目。

13、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的*均数)

14、线段的中点及表示

15、角(*角、周角、直角、锐角、钝角)

16、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

17、重要辅助线

18、作图:任意等分线段。

19、一元一次方程的解法:去分母→去括号→移项→合并同类项→

20、行程问题(匀速运动)

21、增长率问题:

22、一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)

23、"等积"变"比例","比例"找"相似"。

24、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

25、各象限内点的坐标的特点

26、确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

27、定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

28、圆的定义(两种)

29、垂径定理及其推论

30、五种位置关系及判定与性质:(重点:相切)

31、两圆的公切线:⑴定义⑵性质

32、扇形面积公式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、y的变化值与对应的x的变化值成正比例,比值为k

35、当x=0时,b为函数在y轴上的截距。

36、k,b与函数图像所在象限:

37、当时间t一定,距离s是速度v的一次函数。s=vt。

38、求任意线段的长:√(x1—x2)^2+(y1—y2)^2(注:根号下(x1—x2)与(y1—y2)的*方和)

39、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

40、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

41、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右*移一个单位。(加一个数时向左*移,减一个数时向右*移)

42、“三点定圆”定理

43、“等对等”定理及其推论

44、代数式变形中如果有绝对值、*方时,里面的数开出来要注意正负号的取舍。

45、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

46、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

47、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

48、解方程原理:天**衡。

49、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

50、*行四边形面积公式推导:剪拼、*移

51、数不仅可以用来表示数量和顺序,还可以用来编码。

52、身份证码: 18 位

53、重心到顶点的距离与重心到对边中点的距离之比为2:1。

54、直角坐标系中,点A(3,0)在y轴上。

55、当x=-1时,函数y=的值为1.

56、函数y=-8x是一次函数。

57、函数y=4x+1是正比例函数。

58、反比例函数的图象在第一、三象限。

59、cos30= 。

60、勾股定理:两直角边*方和等于斜边*方


数学必修一知识点 50句菁华(扩展6)

——数学七年级上册知识点 50句菁华

1、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。

2、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

3、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。

4、几何图形

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

6、有理数的运算:

7、添括号法则

8、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

9、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

10、等式的性质

11、有理数的概念

12、负数:小于0的数。

13、数轴的三要素:原点、正方向、单位长度。

14、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

15、先定符号,再算绝对值。

16、乘积是1的两个数互为倒数。

17、乘法交换律:ab=ba

18、乘法分配律:a(b+c)=ab+ac

19、除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

21、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

22、先乘方,再乘除,最后加减。

23、同级运算,从左到右进行。

24、系数;一个单项式中,数字因数叫做这个单项式的系数。

25、常数项:不含字母的项叫做常数项。

26、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

27、2 有理数

28、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

29、大于0的数叫做正数(positivenumber).

30、在直线上任取一个点表示数0,这个点叫做原点(origin).

31、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

32、两个负数,绝对值大的反而小.

33、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.

34、几何图形的投影问题

35、数轴上一点a到原点的距离表示a的绝对值。

36、两个负数,绝对值大的反而小。

37、多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次项。

38、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

39、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。

40、科学的记录笔记

41、列代数式

42、利用数轴表示两数大小

43、a可以表示什么数

44、相反数的性质与判定

45、绝对值的几何定义

46、可用字母表示为

47、可归纳为

48、有理数的乘法法则

49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。

50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。


数学必修一知识点 50句菁华(扩展7)

——高中数学知识点总结 50句菁华

1、在的导数。

2、建立适当的坐标系,设出动点M的坐标;

3、充要条件。

4、函数的单调性;

5、等差数列前n项和公式;

6、弧度制;

7、正弦函数、余弦函数的图象和性质;

8、函数的奇偶性;

9、已知三角函数值求角;

10、线段的定比分点;

11、不等式的基本性质;

12、含绝对值的不等式。

13、直线方程的点斜式和两点式;

14、两条直线的交角;

15、由已知条件列出曲线方程;

16、双曲线的简单几何性质;

17、抛物线的简单几何性质。

18、直线和*面垂直的判定与性质;

19、两个*面的位置关系;

20、两个*面垂直的判定和性质;

21、棱柱;

22、排列;

23、组合数的两个性质;

24、随机事件的概率;

25、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

26、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

27、函数的三要素是什么?如何比较两个函数是否相同?

28、空间点、直线、*面之间的位置关系:

29、异面直线:

30、解决不等式的有关问题:

31、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫

32、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

33、不在同一直线上的3个点确定一个圆。

34、扇形弧长l=nπr/180

35、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

36、等差数列的前n项和公式:Sn=

37、等差数列{an}中,若m+n=p+q,则

38、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

39、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.

40、集合的表示:(1){?}如{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4

41、“包含”关系—子集注意:A?B有两种可能

42、不含任何元素的集合叫做空集,记为Φ

43、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}。

44、常用的函数表示法:解析法:图象法:列表法:

45、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。

46、棱锥S—h—高V=Sh/3。

47、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

48、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。

49、函数的三要素:定义域、值域、对应关系.这是判断两个函数是否为同一函数的依据.

50、等比数列性质


数学必修一知识点 50句菁华(扩展8)

——初一数学知识点归纳 40句菁华

1、方程的概念:

2、解一元一次方程的步骤:

3、*行四边形的性质

4、一组邻边相等的*行四边形是菱形(rhombus)。

5、定义:圆是到定点的距离等于定长的点的集合

6、绝对值:

7、判定:

8、对称性:*行四边形是中心对称图形。

9、正数(positionnumber):大于0的数叫做正数。

10、0既不是正数也不是负数。

11、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

12、倒数

13、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

14、近似数(approximatenumber):

15、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

16、*行:在*面上两条直线、空间的两个*面或空间的一条直线与一*面之间没有任何公共点时,称它们*行。

17、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

18、*行公理:经过直线外一点有且只有一条直线与已知直线*行。

19、*行线的性质:

20、*行线的判定:

21、三角形的分类

22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

23、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

24、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

25、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

26、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

27、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

28、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

29、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

30、1.1三角形的边

31、1.3三角形的稳定性

32、相反数

33、绝对值 |a|0.

34、*方根

35、无理数的比较大小:

36、减法:减去一个数等于加上这个数的相反数;

37、1 从算式到方程

38、等式两边加(或减)同一个数(或式子),结果仍相等。

39、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

40、2 直线、射线、线段


数学必修一知识点 50句菁华(扩展9)

——数学分析知识点的总结 40句菁华

1、整式与分式

2、过一点有且只有一条直线和已知直线垂直

3、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

4、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

5、直角三角形斜边上的中线等于斜边上的一半

6、勾股定理

7、勾股定理的逆定理

8、定理2

9、矩形判定定理2

10、菱形性质定理1

11、菱形面积=对角线乘积的一半,即S=(a×b)÷2

12、菱形判定定理2

13、等腰梯形的两条对角线相等

14、梯形中位线定理

15、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

16、性质定理1

17、性质定理2

18、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

19、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

20、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

21、①直线L和⊙O相交

22、切线的判定定理

23、如果两个圆相切,那么切点一定在连心线上

24、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

25、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

26、有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

27、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

28、乘方的定义:

29、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

30、空间点、直线、*面的位置关系

31、空间中的垂直问题

32、判断函数奇偶性忽略定义域致误

33、函数零点定理使用不当致误

34、三角函数的单调性判断致误

35、错位相减求和项处理不当致误

36、数列中的最值错误

37、面积体积计算转化不灵活致误

38、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

39、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。

40、列方程解应用题的常用公式:


数学必修一知识点 50句菁华(扩展10)

——五年级数学知识点 30句菁华

1、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

2、裂项公式(用于特殊的简便计算)

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

4、长方形框架拉成*行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。

5、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

6、循环小数问题:

7、732732写作10.732。

8、小数除以整数:

9、当被除数与除数同时扩大或缩小相同的倍数时,商不变。

10、当被除数(不为0)除以一个小于它的数时,商大于1。

11、11的倍数特征:一个数奇数位数字之和与偶数位数字之和相减(大数减小

12、大单位到小单位,乘进率。小单位到大单位,除以进率。

13、三角形和*行四边形等底等高,则三角形的面积是*行四边形的一半,*行四边形的面积是三角形的2倍。

14、三角形面积是与它等底等高的*行四边形面积的一半。

15、100以内的质数歌谣

16、表示相等关系的式子叫做等式。

17、方程一定是等式;等式不一定是方程。等式>方程

18、20以内的自然数中(包括20),奇数有()偶数有()

19、5□中最大填()时这个数能被3整除,这个数的约数有()

20、如果a能被b整除,则a和b的最大公约数是(),a和b的最小公倍数是()

21、一根长2米的长方体钢材,沿横截面截成两段后,表面积增加0.6*方分米,这段长方体钢材的体积是()立方分米。

22、一个非0自然数不是质数,就是合数。()

23、一个长方体(不含正方体)最多有8条棱相等。()

24、9×1.4+2×0.16200-(3.05+7.1)×18

25、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次*均每小时行多少千米?

26、求近似数的方法一般有三种:

27、小数四则运算顺序和运算定律跟整数是一样的。

28、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

29、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

30、事件发生的机会(或概率)有大小。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划鄂ICP备2022017863号-3